Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The fluid transducer: electricity from gas and water

A large number of technical systems work with air or water. Air compression systems and water pipes are just two examples. Researchers of the Fraunhofer Technology Development Group TEG have now successfully managed to convert this fluidic energy into electricity.

This could enable sensors to supply themselves with energy in future. The new fluidic energy transducer will be on display at the joint Fraunhofer stand number 634 in Hall B2 at the electronica trade fair in Munich from November 11 to 14, 2008.

Air compression systems can be found in many manufacturing operations. If a leak occurs anywhere in the system, the air pressure drops and production comes to a halt until the source of failure has been found. Sensors constantly monitor the pressure in order to keep costly fault-related losses to a minimum. At present, these sensors are either battery-driven or connected up by complex technical wiring. This often makes it very difficult or even impossible to install sensors in places that are hard to reach. Fraunhofer researchers from Stuttgart have developed a new technology that enables the production of energy-autonomous and thus low-maintenance sensors. “Our system is eminently suitable for sensors in pneumatic plants, as we can convert the kinetic energy from air or water into electricity,” explains José Israel Ramirez, who is doing research on this topic at the TEG. “The fluidic energy transducer generates electricity in the microwatt or milliwatt range. This is sufficient to supply cyclically operating sensors with enough energy to read out and transmit the relevant data.”

The fluid-electricity conversion takes place in a fixed housing, through which the medium is fed on a course similar to that of blood circulating in the heart. The Coandã effect causes the constant stream of fluid to oscillate. This produces a periodic pressure fluctuation in the feedback branches, which are coupled to piezoceramics. “The piezoceramics convert the fluidic energy into electricity,” says group leader Axel Bindel, summarizing the principle. This fluidic conversion is simple and cost-efficient. “ We have the advantage that both air and water can be used to generate energy. What’s more, we don’t have any movable parts in our system. The structure can be produced in simple processes, and that saves costs.” The new technique can be applied to any system in which a fluid or a gas is guided through a fixed geometry – in supply networks or in medical engineering, for example.

“Our objective is to be able to provide currently battery-driven devices, such as water meters, with an autonomous supply of energy in the near future, resulting in completely independent systems,” says Bindel. The TEG researchers will be presenting a prototype of the fluid transducer at the joint Fraunhofer stand at the electronica trade fair.

Axel Bindel | EurekAlert!
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>