Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New fabrication process for microarray chips for clinical diagnostics

At this year’s Biotechnica from October 11 to 13, 2011 in Hannover, the Fraunhofer Institute for Laser Technology ILT will be demonstrating a laser-based bench-top system for fabricating protein microarray chips (Hall 9, Booth D10).

These arrays can be used in clinical diagnostics to identify tumor markers in blood samples, and they are also capable of detecting pathogens responsible for infectious diseases. Thanks to the new resource-saving production process, complex analyses can be carried out on even the tiniest amounts of biopsy material.

Fig. 1: Laser-based bench-top system protoprinter.
Fraunhofer Institute for Laser Technology ILT, Aachen.

Fig. 2: PDMS - Transfer with the protoprinter.
Fraunhofer Institute for Laser Technology ILT, Aachen.

Microarray chips for use as a diagnostics tool are produced by depositing small amounts of biopsy material, taken for instance from a patient’s tumor cells, onto a substrate. It is often only possible to gather a tiny amount of the relevant cell material, and this limits the extent of testing that can be carried out. But if a patient is to receive targeted treatment, then comprehensive testing is essential. That is why it is important to optimize preparation of the biopsy specimens by ensuring they are used to make as many microarray chips as possible. Microarrays are usually produced using microdispensing systems, which function in a similar way to an ink-jet printer. The major drawback of these systems is that the printer head quickly becomes obstructed by many proteins, such as antibodies, that are crucial to the analysis. The process has to be halted and the printer head either cleaned or replaced – making it tremendously time-consuming and costly for users.

Printing without a printer head: reliable, precise and fast

As part of the ProtoPrint INNONET project, sponsored by the German Federal Ministry of Economics and Technology (BMWi), and in collaboration with GeSiM Gesellschaft für Silizium-Mikrosysteme mbH, Fraunhofer ILT has developed a laser-based bench-top system for the fabrication of protein microarray chips. Unlike conventional printer technology, this system is able to deliver microscopic amounts of all kinds of proteins directly onto the substrate material. With the aid of this so-called »protoprinter«, Dominik Riester and his team have succeeded in using proteins to produce a functioning test system for cell analysis.

This is how the printing process works: The microarray is situated beneath a glass slide which has the biopsy material on its underside along with an intermediate titanium absorber layer. A pulsed laser beam is focused on the absorber layer, evaporating the titanium, and the resulting forwards impulse transfers the biopsy material onto the microarray. This laser-based process has no need of a printer head and so it can transfer all the relevant proteins. The absence of a printer head also means there is none of the associated sample wastage caused, for example, by feeder lines. This dramatically reduces the amount of biopsy material required to carry out the analysis. What is more, the protoprinter can produce spot sizes of 10 µm to 300 µm – which means up to 500,000 protein spots can fit onto a surface the size of a thumbnail, allowing diagnosis to be performed with a minimum of material. Until now it has not been possible to deposit sample material onto a substrate with such precision and efficiency and in such small amounts. »The protoprinter is reliable and it saves both resources and time. That’s what makes it more cost-effective to use than a microdispensing system,« says Riester.

What you see is what you print

The design of the protoprinter is currently being refined to make it capable of producing artificial hematopoietic stem cell niches. In this, the Aachen-based researchers are focusing in particular on integrating an automated camera-assisted recognition process. Its job is to enable the targeted transfer of cells and other biomaterials – so providing optimal control of the printing process.

During the Fraunhofer press tour at Biotechnica, our experts will be presenting the protoprinter as well as other exhibits relating to the topic of BioRap artificial vessels. Those wishing to participate are invited to meet at 3.30 pm on October 11, 2011, at the joint Fraunhofer Booth D10 in Hall 9.

Contacts at Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dominik Riester
Biotechnology and Laser Therapy
Phone +49 241 8906-529
Dr. Martin Wehner
Biotechnology and Laser Therapy
Phone +49 241 8906-202
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>