Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Euromold 2012: Better protection for forging dies

22.11.2012
Hard or tough – very often, the manufacturers of forging dies must make a compromise here. A new technology now makes it possible to combine both characteristics and clearly expand the useful life of forging dies. The scientists will introduce the process at the Euromold trade fair (Hall 11, Booth C66), from November 27 - 30 in Frankfurt, Germany.

Forging dies must withstand a lot. They must be hard so that their surface does not get too worn out and is able to last through great changes in temperature and handle the impactful blows of the forge. However, the harder a material is, the more brittle it becomes - and forging dies are less able to handle the stress from the impact.


laser melts the uppermost layer of a free-form forging die. © Fraunhofer IPT

For this reason, the manufacturers had to find a compromise between hardness and strength. One of the possibilities is to surround a semi-hard, strong material with a hard layer. The problem is that the layer rests on the softer material and can be indented by blows, like the shell of an egg.

Researchers from the Fraunhofer Institute for Production Technology IPT in Aachen, Germany have now developed an alternative. “The forging dies we have been working on have a useful life that is up to twice as long,“ explains Kristian Arntz, head of department at the IPT. “We are using a working material that is less hard and able to handle the impact stress well. We melt the uppermost layer of the material with a laser and introduce a powder into the melt material that is used to chemically alter the characteristics of the material. We have therefore achieved a large degree of hardness in the upper millimeter.“ The advantage is that since the characteristics of the outer layer do not change abruptly (as is the case in a deposited layer), but increases in hardness gradually (this is also called a hardness gradient) we can circumvent the “egg shell effect“.

In addition, the particles act like sand paper and prevent the material from wearing off the die. Since the wear only occurs in certain spots of the die, the scientists are very targetedly altering only these surface areas. They are therefore further minimizing the effect the layer has on the impact resistance. Simulations help to calculate the areas that are particularly stressed – and knowledge gained by experience is also applied.

To be able to work on the forging dies, the scientists and their colleagues at Alzmetall have developed a machine with which they are able to work on the free-form die inserts and forging dies. The scientists have also developed a software with ModuleWorks that ensures that the laser travels across the surface at a constant speed and that the gaps between the laser paths remain even – otherwise tears would develop in the surface.

“This isn‘t a problem if the surfaces are straight; however, we had to develop special algorithms for free-formed tools that keep the path distance and the speed constant – even with complex geometries,“ said Arntz. The machine and the software are ready; the scientists have already manufactured initial tools and dies for the industry. They will introduce the technology at the Euromold trade fair (Hall 11, Booth C66) from November 27 - 30 in Frankfurt, Germany.

The scientists are planning, in a further step, to reduce expensive raw materials such as chromium, molybdenum and vanadium. To date, these materials are present in all forging dies. “We want to utilize the basic fundamentals of our technology so that we only have to alloy the reworked surface layer with these materials.“

Kristian Arntz | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/november/better-protection-for-forging-dies.html

More articles from Trade Fair News:

nachricht New, higher-precision pressure transmitters added to the Sitrans family
18.06.2015 | Siemens AG

nachricht Increasing the Productivity of Ultrafast Laser Systems
17.06.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Surfing a wake of light

Researchers observe and control light wakes for the first time

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling...

Im Focus: Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Down to the quantum dot

07.07.2015 | Physics and Astronomy

Tundra study uncovers impact of climate warming in the Arctic

07.07.2015 | Earth Sciences

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover

07.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>