Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Assembly Inspection: Automatic Quality Control Even for Small Quantities

08.05.2013
Like many industries, the aircraft industry manufactures its products in small quantities: Every airline desires its own interiors – production lines are therefore not geared toward mass production.

Manual assembly procedures are typical and assembly jobs change so steadily that automatic quality control has not been worthwhile. Novel software developed at the Fraunhofer IFF is an answer to this:


In model-based assembly inspection, software compares the digital target data of assembled components with the real outcome. Errors are detected immediately. (c) Fraunhofer IFF

Using cameras, it compares the particular CAD data of a product digitally with the finished assembled product and can incorporate modifications with a click of the mouse. Our researchers will be presenting this technology at the Control trade fair (hall 1, booth 1502) in Stuttgart on May 14 to 17.

One day is like the next on automotive assembly lines: Typically, around one thousand vehicles roll off a line every day and workers execute the same actions many times. The situation is entirely different in the aircraft industry: Although the birds of steel are alike on the outside, every airline desires a different interior.

Where are the seats located? What should the overhead compartments look like? Technicians usually leaf through the documents on specific components to see where and how they should be mounted. At what angle do they have to be attached where with what bolts? Once a worker is finished their assembly, she or he rechecks whether everything is in the right spot and confirms that it is. They can overlook errors, though. Humans do not have the same level of concentration every day and they tire toward the evening. Quality inspectors therefore examine individual products closely yet one more time but are not able to inspect every single bolt –100 percent inspection is impossible with manual methods.

Manufacturers therefore want automatic quality control, especially when components are relevant to safety. Approaches to large quantities like those in the automotive industry already exist, which use software to compare assembled components with photographs taken beforehand. This is hardly worthwhile for small production lines, however: All of the components must be assembled first of all and then photographed in order to have reference images for further assembly. If, for example, an airline ordered only four aircraft with the respective interiors, the assembly of only just three could be monitored.

Digital Comparison of Assembled Products with CAD Data

A new technology will now take even the production of such small quantities another step toward defect-free manufacturing and reliable detection of assembly errors. It was developed by researchers at the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg. “Rather than using photos of a real assembled component as a reference, we use virtual images to reproduce the ideal state, instead,” says Dr. Dirk Berndt, manager of the Measurement and Testing Technology Business Unit at the Fraunhofer IFF. To do so, the researchers developed software that creates a “photo” – of a product that has not yet even been assembled – from the CAD data and the particular camera positions. The principle: Once a technician has finished assembling a component, a camera takes a picture of it – as during conventional automatic inspection. Rather than comparing this picture with one taken beforehand, the software computes a virtual photo based on the CAD data, which has exactly the same perspective as the picture really taken. All of this is done in seconds, i.e. in real time. The software compares this virtual picture with the picture taken of the real component.

Components No Longer Have to Be Aligned Precisely

This technology has a number of benefits: It can already be used during the assembly of the first product and is therefore worthwhile even for very small quantities. If the CAD data change, only a mouse-click is needed to load the current data into the system. Furthermore, the software allows for the position in which the inspected component is placed before the camera and computes the virtual image accordingly. Thus, the component must not be positioned exactly in the scanned field. Conventional automatic quality control systems require that components be guided under the camera precisely. A comparison is impossible if they are not.

“The technology in and of itself has been developed and is close to being fully perfected,” says Berndt. The researchers intend to be using it in two prototype applications by the end of this year. The researchers will be presenting their technology at the Control trade fair (hall 1, booth 1502) in Stuttgart on May 14 to 17.

René Maresch | Fraunhofer-Institut
Further information:
http://www.iff.fraunhofer.de/en/business-units/measurement-testing-technology/model-based-assembly-inspection.html
http://www.iff.fraunhofer.de/en/press/press-releases/2013/digital-assembly-inspection-automatic-quality-control-even-for-small-quantiti

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>