Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Assembly Inspection: Automatic Quality Control Even for Small Quantities

08.05.2013
Like many industries, the aircraft industry manufactures its products in small quantities: Every airline desires its own interiors – production lines are therefore not geared toward mass production.

Manual assembly procedures are typical and assembly jobs change so steadily that automatic quality control has not been worthwhile. Novel software developed at the Fraunhofer IFF is an answer to this:


In model-based assembly inspection, software compares the digital target data of assembled components with the real outcome. Errors are detected immediately. (c) Fraunhofer IFF

Using cameras, it compares the particular CAD data of a product digitally with the finished assembled product and can incorporate modifications with a click of the mouse. Our researchers will be presenting this technology at the Control trade fair (hall 1, booth 1502) in Stuttgart on May 14 to 17.

One day is like the next on automotive assembly lines: Typically, around one thousand vehicles roll off a line every day and workers execute the same actions many times. The situation is entirely different in the aircraft industry: Although the birds of steel are alike on the outside, every airline desires a different interior.

Where are the seats located? What should the overhead compartments look like? Technicians usually leaf through the documents on specific components to see where and how they should be mounted. At what angle do they have to be attached where with what bolts? Once a worker is finished their assembly, she or he rechecks whether everything is in the right spot and confirms that it is. They can overlook errors, though. Humans do not have the same level of concentration every day and they tire toward the evening. Quality inspectors therefore examine individual products closely yet one more time but are not able to inspect every single bolt –100 percent inspection is impossible with manual methods.

Manufacturers therefore want automatic quality control, especially when components are relevant to safety. Approaches to large quantities like those in the automotive industry already exist, which use software to compare assembled components with photographs taken beforehand. This is hardly worthwhile for small production lines, however: All of the components must be assembled first of all and then photographed in order to have reference images for further assembly. If, for example, an airline ordered only four aircraft with the respective interiors, the assembly of only just three could be monitored.

Digital Comparison of Assembled Products with CAD Data

A new technology will now take even the production of such small quantities another step toward defect-free manufacturing and reliable detection of assembly errors. It was developed by researchers at the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg. “Rather than using photos of a real assembled component as a reference, we use virtual images to reproduce the ideal state, instead,” says Dr. Dirk Berndt, manager of the Measurement and Testing Technology Business Unit at the Fraunhofer IFF. To do so, the researchers developed software that creates a “photo” – of a product that has not yet even been assembled – from the CAD data and the particular camera positions. The principle: Once a technician has finished assembling a component, a camera takes a picture of it – as during conventional automatic inspection. Rather than comparing this picture with one taken beforehand, the software computes a virtual photo based on the CAD data, which has exactly the same perspective as the picture really taken. All of this is done in seconds, i.e. in real time. The software compares this virtual picture with the picture taken of the real component.

Components No Longer Have to Be Aligned Precisely

This technology has a number of benefits: It can already be used during the assembly of the first product and is therefore worthwhile even for very small quantities. If the CAD data change, only a mouse-click is needed to load the current data into the system. Furthermore, the software allows for the position in which the inspected component is placed before the camera and computes the virtual image accordingly. Thus, the component must not be positioned exactly in the scanned field. Conventional automatic quality control systems require that components be guided under the camera precisely. A comparison is impossible if they are not.

“The technology in and of itself has been developed and is close to being fully perfected,” says Berndt. The researchers intend to be using it in two prototype applications by the end of this year. The researchers will be presenting their technology at the Control trade fair (hall 1, booth 1502) in Stuttgart on May 14 to 17.

René Maresch | Fraunhofer-Institut
Further information:
http://www.iff.fraunhofer.de/en/business-units/measurement-testing-technology/model-based-assembly-inspection.html
http://www.iff.fraunhofer.de/en/press/press-releases/2013/digital-assembly-inspection-automatic-quality-control-even-for-small-quantiti

More articles from Trade Fair News:

nachricht High Resolution Laser Structuring of Thin Films at LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Open ecosystem for smart assistance systems
20.03.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>