Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CeBIT: TopDocuMation – a test system for painted components of all sizes

25.02.2014
Whether city bus or luxury coach: the one thing that all buses have in common is large surfaces that lend themselves to attracting attention with special paintwork or advertising. In the production of these vehicles, stringent quality control of the painted surfaces with its multitude of visual designs is therefore essential.

At CeBIT the Fraunhofer IOSB will present a test method that is also ideally suited for reflective surfaces and which simplifies the tester’s work with an integrated intuitive gesture control system.


The deflectometric measurement method also allows for the inspection of large components with reflective surfaces.

Photo: Manfred Zentsch © Fraunhofer IOSB


Here, as an example, a section of a bus hatch: A comparison of the recorded image with a master image (for example from CAD image) yields an image showing the differences between the two.

© Fraunhofer IOSB

The advantage of the deflectometric procedure over other 3D methods, such as triangulation and “shape from shading”, lies in that it examines not the surface itself but its mirror image. A graphic pattern consisting of either black-and-white stripes or a chess-board pattern is displayed on a screen. One or more cameras record images of the pattern’s reflection on the component’s surface. This can be compared with a human examiner, who views a reflecting object from various angles to detect surface defects.The object’s surface topography is then determined by a “measuring point cloud” that can be used to generate an FEM (finite element method) model of the surface. The generated FEM model of the actual surface can be compared with the contour of the CAD design drawing. The structure of the surface is clearly visible in the result. To assess the surface, statements about the surface structure on a micro level can be made (short-wave nature, paint quality). The sensitivity of the assessment can therefore be adapted to nearly all requirements.

Another special feature of the presented system is its integrated gesture control functionality. When the examiner points at the location at which a defect has been identified the system detects the exact position of the indicated point using 3D-tracking with two Kinects and records this position in the documentation system. Especially when dealing with very large components this simplifies the work processes and saves a lot of time, since examiners no longer have to leave their workplace to enter the type and location of the defect at a computer terminal. 

To document various types of defect, the system can be trained to recognize hand gestures. If the part is conforming, the examiner, for example, wipes over it from left to right, releasing it for further processing.

The scientists will present the system at CeBIT at the Fraunhofer stand in Hall 9.

For further information about deflectometry visit:

http://www.iosb.fraunhofer.de/servlet/is/4698/?highlight=deflektometrie

For further information about gesture control visit:

http://www.iosb.fraunhofer.de/servlet/is/33978/?highlight=gesten

Weitere Informationen:

http://www.iosb.fraunhofer.de/servlet/is/43780/

Dipl.-Ing. Sibylle Wirth | Fraunhofer-Institut

Further reports about: 3D-tracking Bildauswertung IOSB TopDocuMation processing structure triangulation

More articles from Trade Fair News:

nachricht LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016
25.05.2016 | Laser Zentrum Hannover e.V.

nachricht Aachen Center for 3D Printing at RapidTech 2016: Additive Manufacturing for Medium-Size Companies
25.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>