Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated Laser Material Processing – precise, flexible and time-saving

28.10.2010
At the International Sheet Metal Working Technology Exhibition, EuroBLECH 2010 in Hanover, Germany (from October 26 to 30, 2010), the Fraunhofer Institute for Laser Technology ILT will be presenting tailor-made system solutions for higher component precision and process stability. Customers from all sectors of sheet metal processing industries can find out more about the newest processes and system components of the researchers from Aachen at Stand 11 in Hall C06.

By combining laser cutting and laser welding in a single processing head, the Fraunhofer researchers have created a system that leads to higher flexibility in plant dimensioning, optimizing the processing sequence and reducing the clamping, storage and transport times. To do this, the institute has developed a so-called combi-head, which is produced and marketed by the cooperation partner Laserfact GmbH in Aachen and whose latest functional upgrades will be presented at EuroBLECH 2010.


The combi-head cuts and measures the U-shaped section…
Fraunhofer Institute for Laser Technology ILT, Aachen


and welds on the face plate.
Fraunhofer Institute for Laser Technology ILT, Aachen

Thanks to the Tool Center Point, common to both processes, component precision and process stability during laser cutting and welding have been significantly increased. The signals from the capacitive distance sensor system of the combi-head are used for normal distance control as well as for component measurement so as to precisely predetermine the subsequent weld seam.

Combi-head in Integrated Process Chains

In this way, complex sheet metal component parts can be cut to size, measured, welded and finally cut again, all in an integrated process chain. Dr. Dirk Petring, group manager of Macro Joining and Cutting, explains, »The connection of combi-processing and capacitive component measurement is not only suitable for concealed t-joints in structural components of automobile construction, but can also offer new solutions wherever curved or deep-drawn sheet metal parts need to be joined together to create a precise sheet metal group in spite of their geometric tolerances.«

TCP and processing heads were also a part of another process developed at the Fraunhofer ILT: an image processing system »observes« the laser processing position on the workpiece directly through the processing optics – analogous to photography with a single lens reflex camera. The direct surroundings of the processing position are analyzed by a camera system with downstream image processing. »The system measures directly in the area of the processing position and not at the head or in the robot axes,« explains Dipl. Ing. Christoph Franz, scientist at the Fraunhofer ILT. »Since the process gauges the ongoing measurement accuracy, no measurement errors are made.« The measuring system records the current process speed and uncovers deviations from the preset values. It ensures that the processing head follows the contours of the workpiece exactly. According to Franz, »The user receives precise feedback on how the cinematic process parameters comply to the track that was previously programmed into the machine control system. With this process, the tracks of any processing system can be measured.« This is an important point with lasers, for which the so-called energy per unit length has to be constant during the entire processing.

Process Monitoring during »Laser Brazing«

In Hanover a joint development with the Fraunhofer IPT was also exhibited: »Coaxial Process Control (CPC)«, developed specially for laser brazing, takes the process zones under the magnifying glass in the visible and near infrared spectral range (NIR). The visible images deliver data on feed speed, wire position and geometric measurement of the braze seam. The NIR images informs users about the heat distribution in the workpiece, the emergence of pores or about single-sided moistening. »The process monitoring during the laser process makes a further production step – a time-consuming and expensive quality control – superfluous,« says Dipl.-Ing. Michael Ungers, scientist at the Fraunhofer ILT. The following speaks for the CPC model: in comprehensive test series with steel and aluminum working materials, the system was tested and also found suitable for automated process monitoring thanks to special software.

Contact Partners at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dr. Dirk Petring
Group Manager, Macro Joining and Cutting
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de
Dipl.-Ing. Christoph Franz
Sensors
Telephone +49 241 8906-621
christoph.franz@ilt.fraunhofer.de
Dipl.-Phys. Michael Ungers
Sensors
Telephone +49 241 8906-281
michael.ungers@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>