Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated Laser Material Processing – precise, flexible and time-saving

28.10.2010
At the International Sheet Metal Working Technology Exhibition, EuroBLECH 2010 in Hanover, Germany (from October 26 to 30, 2010), the Fraunhofer Institute for Laser Technology ILT will be presenting tailor-made system solutions for higher component precision and process stability. Customers from all sectors of sheet metal processing industries can find out more about the newest processes and system components of the researchers from Aachen at Stand 11 in Hall C06.

By combining laser cutting and laser welding in a single processing head, the Fraunhofer researchers have created a system that leads to higher flexibility in plant dimensioning, optimizing the processing sequence and reducing the clamping, storage and transport times. To do this, the institute has developed a so-called combi-head, which is produced and marketed by the cooperation partner Laserfact GmbH in Aachen and whose latest functional upgrades will be presented at EuroBLECH 2010.


The combi-head cuts and measures the U-shaped section…
Fraunhofer Institute for Laser Technology ILT, Aachen


and welds on the face plate.
Fraunhofer Institute for Laser Technology ILT, Aachen

Thanks to the Tool Center Point, common to both processes, component precision and process stability during laser cutting and welding have been significantly increased. The signals from the capacitive distance sensor system of the combi-head are used for normal distance control as well as for component measurement so as to precisely predetermine the subsequent weld seam.

Combi-head in Integrated Process Chains

In this way, complex sheet metal component parts can be cut to size, measured, welded and finally cut again, all in an integrated process chain. Dr. Dirk Petring, group manager of Macro Joining and Cutting, explains, »The connection of combi-processing and capacitive component measurement is not only suitable for concealed t-joints in structural components of automobile construction, but can also offer new solutions wherever curved or deep-drawn sheet metal parts need to be joined together to create a precise sheet metal group in spite of their geometric tolerances.«

TCP and processing heads were also a part of another process developed at the Fraunhofer ILT: an image processing system »observes« the laser processing position on the workpiece directly through the processing optics – analogous to photography with a single lens reflex camera. The direct surroundings of the processing position are analyzed by a camera system with downstream image processing. »The system measures directly in the area of the processing position and not at the head or in the robot axes,« explains Dipl. Ing. Christoph Franz, scientist at the Fraunhofer ILT. »Since the process gauges the ongoing measurement accuracy, no measurement errors are made.« The measuring system records the current process speed and uncovers deviations from the preset values. It ensures that the processing head follows the contours of the workpiece exactly. According to Franz, »The user receives precise feedback on how the cinematic process parameters comply to the track that was previously programmed into the machine control system. With this process, the tracks of any processing system can be measured.« This is an important point with lasers, for which the so-called energy per unit length has to be constant during the entire processing.

Process Monitoring during »Laser Brazing«

In Hanover a joint development with the Fraunhofer IPT was also exhibited: »Coaxial Process Control (CPC)«, developed specially for laser brazing, takes the process zones under the magnifying glass in the visible and near infrared spectral range (NIR). The visible images deliver data on feed speed, wire position and geometric measurement of the braze seam. The NIR images informs users about the heat distribution in the workpiece, the emergence of pores or about single-sided moistening. »The process monitoring during the laser process makes a further production step – a time-consuming and expensive quality control – superfluous,« says Dipl.-Ing. Michael Ungers, scientist at the Fraunhofer ILT. The following speaks for the CPC model: in comprehensive test series with steel and aluminum working materials, the system was tested and also found suitable for automated process monitoring thanks to special software.

Contact Partners at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dr. Dirk Petring
Group Manager, Macro Joining and Cutting
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de
Dipl.-Ing. Christoph Franz
Sensors
Telephone +49 241 8906-621
christoph.franz@ilt.fraunhofer.de
Dipl.-Phys. Michael Ungers
Sensors
Telephone +49 241 8906-281
michael.ungers@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Trade Fair News:

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

nachricht LZH at the LASER World of Photonics 2017: Light for Innovation
16.06.2017 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>