Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“PCGP” - Polymer-Conjugate Technology for the Rapid Chemoenzymatic Synthesis of Glycopeptides

19.11.2012
Glycosylation is known to play a key role in numerous biological and biochemical functions such as, e.g. protein folding, cell-cell communication, cellular differentiation, cell-matrix interaction and viral invasion. Moreover, the glycosylation pattern of a peptide may have a great impact on the immunogenicity and the proteolytic stability of said peptide. A glycopeptide itself and/or a carbohydrate moiety cleaved off said glycopeptide may serve as an epitope.

So far, glycopeptides are mostly obtained from natural sources. However, purification of said peptides is highly challenging and laborious. The glycopeptides found in nature are mostly proteins of more than 100 amino acids in length, often comprising more than one glycosylation site(s) and their glycosylation pattern cannot be fully controlled. Therefore, there is still the need for efficient methods for producing glycopeptides by synthetical means. Currently, there are two common strategies for the chemical synthesis of glycopeptides known in the art. According to the first strategy, a peptide strand is synthesized and, during the synthesis of said peptide, one or more glycosylated amino acid building block(s) are integrated in the sequence instead of standard amino acids. According to the second strategy, a peptide is first fully synthesized, then, subsequently, one or more protecting groups are cleaved off selectively and the carbohydrate building block is conjugated to the peptide. Both strategies bear several severe drawbacks. The present invention relates to a method for the production of glycosylated peptides conjugated with one or more hydrophilic polymer(s) and glycosylating the polymer-conjugated peptide by means of one or more glycosyltransferase(s).

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2656&lang=en
http://www.technologieallianz.de

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>