Manipulation of the growth of living cells via cell-surface-interaction

Scientists of Saarland University have developed a setup, which allows a controlled manipulation of cells via cell‐surface‐interaction. Therefore biocompatible magnetic nanoparticles are functionalized with biomolecules, which in turn are able to bind specific cell types. These particles are immobilized on a magnetic substrate as well and the complex can be placed in any kind of cell culture vessel. Influenced by external magnetic fields, domain structures are formed by the complex. These domains can be changed at any time during cell cultivation through external fields as the immobilized particles follow those changes due to their magnetic interaction. The setup is computer‐controlled and allows to observe the cell behaviour over several days. Moreover a direct reaction to this is possible by manipulating the domain structure via external magnetic fields.

Further Information: PDF

Universität des Saarlandes Wissens- und Technologietransfer GmbH PatentVerwertungsAgentur der saarländischen Hochschulen
Phone: +49 (0)681/302-71302

Contact
Dipl.-Kfm. Axel Koch (MBA), Dr. Conny Clausen, Dr. Hauke Studier, Dr. Susanne Heiligenstein

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors