Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Handling Robot SAMARA

08.06.2012
The handling robot system SAMARA (System Applying Momentum transmission for Acceleration of an end-effector with Redundant Axis) combines the advantages of heavy payloads and wide working space from Scara robots with the high acceleration of Delta robots. This is achieved by a new motion sequence that is characterized by a steadily rotation of the first axis. Thus it is necessary to accelerate only small masses, as the main part of energy used for the motion cycle is kept for the following cycle.<br><br>By applying such a redundant axis the kinetic energy can be retained in the robot links during a picking process and returned to the effector for speeding up the whole robot additional to the drives torques. As the nullspace movement ends with a stretched second and third link, acceleration of the effector must be regarded as an impulse, leading to acceleration of 20g. <br>

SAMARA allows solving “pick and place“ tasks even for heavy loads extremely fast, precise and energy-beneficial with only little space required for the SAMARA robot itself.<br> <br> <strong>Benefits</strong><br> <ul>

<li>Under actuated motion</li> <li>Highly dynamic operation of multiple arms within same work space</li> <li>Suitable for heavy payloads</li> <li>Wide working space</li> <li>High acceleration (up to 20g)</li> <li>Only low space required</li> <li>Flexible and very precise</li> <li>Combination of various end-effectors possible</li> <li>Continuous movement reduces energy loss caused by stopping and change of direction</li> </ul><br> <strong>IP Rights</strong><br> German Patent Application <br> <br> <strong>Patent Owner</strong><br> Technische Universität Berlin<br>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=0978&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Novel carbonization process of PAN-nanofiber mats with enhanced surface area and porosity
20.02.2017 | TechnologieAllianz e.V.

nachricht Asian plant helps against the Ebola virus
20.02.2017 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>