Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BladderCa Urine Test - EI-BLA: 2-gene biomarker panel for early detection of bladder cancer from urine

20.04.2012
The ECRG4 and ITIH5 (EI) gene promoter methylation has been identified as a novel objective biomarker panel for the diagnosis of bladder cancer (BLA) at an early stage (EI-BLA). This 2-gene panel detects bladder cancer with a specificity of 100% combined with a sensitivity of

84%. The biomarker panel is detectable in the urine sediment using standard analytical techniques (e. g. pyro-sequencing as a reliable and fast method to quantify CpG methylation). Due to the easy access to the samples the inventive method is cost-effective and convenient for the patients. Commercial Opportunities: Urinary bladder carcinoma is one of the most common cancers in human and the most expensive tumour in the US and Europe due to the need for lifelong surveillance. Cystoscopy, “the gold standard” for diagnostic evaluation of bladder cancer, is an invasive, time-consuming and cost-intensive method that is little accepted by the patients. Voided urine cytology as non-invasive method has been utilized as an additional diagnostic tool and screening test. However, the limitations of this method are found both in its comparative low sensitivity and its low objectiveness as it is dependent on the evaluation and experience of the observer. There has been great interest in identifying tumour biomarkers for a more sensitive and objective test, but the currently available, approved urine biomarkers cannot be fully recommended for clinical use.

EI-BLA, the inventive 2-gene biomarker panel is more specific than any of these detection systems and thus constitutes a promising new objective approach for early bladder cancer detection. Its strong diagnostic potential has been demonstrated in a larger cohort of urine samples from bladder cancer vs. healthy controls. A further screening trial using independent (multicenter) urine samples has been initiated.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

info@technologieallianz.de | TechnologieAllianz e.V.
Further information:
http://www.technologieallianz.de/angebote.php?sort=sag&id=2692&lang=en
http://www.technologieallianz.de

More articles from Technology Offerings:

nachricht Microarray to determine responsiveness of tumors to antiangiogenic treatment
06.12.2016 | TechnologieAllianz e.V.

nachricht Peltier Adsorption Trap
29.11.2016 | TechnologieAllianz e.V.

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>