Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Statistical analysis projects future temperatures in North America

For the first time, researchers have been able to combine different climate models using spatial statistics - to project future seasonal temperature changes in regions across North America.

They performed advanced statistical analysis on two different North American regional climate models and were able to estimate projections of temperature changes for the years 2041 to 2070, as well as the certainty of those projections.

The analysis, developed by statisticians at Ohio State University, examines groups of regional climate models, finds the commonalities between them, and determines how much weight each individual climate projection should get in a consensus climate estimate.

Through maps on the statisticians’ website, people can see how their own region’s temperature will likely change by 2070 - overall, and for individual seasons of the year.

Given the complexity and variety of climate models produced by different research groups around the world, there is a need for a tool that can analyze groups of them together, explained Noel Cressie, professor of statistics and director of Ohio State’s Program in Spatial Statistics and Environmental Statistics.

Cressie and former graduate student Emily Kang, now at the University of Cincinnati, present the statistical analysis in a paper published in the International Journal of Applied Earth Observation and Geoinformation.

“One of the criticisms from climate-change skeptics is that different climate models give different results, so they argue that they don’t know what to believe,” he said. “We wanted to develop a way to determine the likelihood of different outcomes, and combine them into a consensus climate projection. We show that there are shared conclusions upon which scientists can agree with some certainty, and we are able to statistically quantify that certainty.”

For their initial analysis, Cressie and Kang chose to combine two regional climate models developed for the North American Regional Climate Change Assessment Program. Though the models produced a wide variety of climate variables, the researchers focused on temperatures during a 100-year period: first, the climate models' temperature values from 1971 to 2000, and then the climate models' temperature values projected for 2041 to 2070. The data were broken down into blocks of area 50 kilometers (about 30 miles) on a side, throughout North America.

Averaging the results over those individual blocks, Cressie and Kang’s statistical analysis estimated that average land temperatures across North America will rise around 2.5 degrees Celsius (4.5 degrees Fahrenheit) by 2070. That result is in agreement with the findings of the United Nations Intergovernmental Panel on Climate Change, which suggest that under the same emissions scenario as used by NARCCAP, global average temperatures will rise 2.4 degrees Celsius (4.3 degrees Fahrenheit) by 2070. Cressie and Kang's analysis is for North America - and not only estimates average land temperature rise, but regional temperature rise for all four seasons of the year.

Cressie cautioned that this first study is based on a combination of a small number of models. Nevertheless, he continued, the statistical computations are scalable to a larger number of models. The study shows that climate models can indeed be combined to achieve consensus, and the certainty of that consensus can be quantified.

The statistical analysis could be used to combine climate models from any region in the world, though, he added, it would require an expert spatial statistician to modify the analysis for other settings.

The key is a special combination of statistical analysis methods that Cressie pioneered, which use spatial statistical models in what researchers call Bayesian hierarchical statistical analyses.

The latter techniques come from Bayesian statistics, which allows researchers to quantify the certainty associated with any particular model outcome. All data sources and models are more or less certain, Cressie explained, and it is the quantification of these certainties that are the building blocks of a Bayesian analysis.

In the case of the two North American regional climate models, his Bayesian analysis technique was able to give a range of possible temperature changes that includes the true temperature change with 95 percent probability.

After producing average maps for all of North America, the researchers took their analysis a step further and examined temperature changes for the four seasons. On their website, they show those seasonal changes for regions in the Hudson Bay, the Great Lakes, the Midwest, and the Rocky Mountains.

In the future, the region in the Hudson Bay will likely experience larger temperature swings than the others, they found.

That Canadian region in the northeast part of the continent is likely to experience the biggest change over the winter months, with temperatures estimated to rise an average of about 6 degrees Celsius (10.7 degrees Fahrenheit) - possibly because ice reflects less energy away from the Earth’s surface as it melts. Hudson Bay summers, on the other hand, are estimated to experience only an increase of about 1.2 degrees Celsius (2.1 degrees Fahrenheit).

According to the researchers’ statistical analysis, the Midwest and Great Lakes regions will experience a rise in temperature of about 2.8 degrees Celsius (5 degrees Fahrenheit), regardless of season. The Rocky Mountains region shows greater projected increases in the summer (about 3.5 degrees Celsius, or 6.3 degrees Fahrenheit) than in the winter (about 2.3 degrees Celsius, or 4.1 degrees Fahrenheit).

In the future, the researchers could consider other climate variables in their analysis, such as precipitation.

This research was supported by NASA’s Earth Science Technology Office. The North American Regional Climate Change Assessment Program is funded by the National Science Foundation, the U.S. Department of Energy, the National Oceanic and Atmospheric Administration, and the U.S. Environmental Protection Agency office of Research and Development.

Contact: Noel Cressie, (614) 292-2866;
Written by Pam Frost Gorder, (614) 292-9475;

Noel Cressie | EurekAlert!
Further information:

More articles from Statistics:

nachricht 3% more academic staff at higher education institutions
03.07.2015 | Statistisches Bundesamt

nachricht Number of habilitations up 4% in 2014
17.06.2015 | Statistisches Bundesamt

All articles from Statistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Siemens offers concrete solution portfolio for Industrie 4.0 with Digital Enterprise

24.11.2015 | Trade Fair News

Compact, rugged, three-phase power supplies for worldwide use

24.11.2015 | Trade Fair News

Sensor sees nerve action as it happens

24.11.2015 | Life Sciences

More VideoLinks >>>