Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statistical analysis projects future temperatures in North America

16.05.2012
For the first time, researchers have been able to combine different climate models using spatial statistics - to project future seasonal temperature changes in regions across North America.

They performed advanced statistical analysis on two different North American regional climate models and were able to estimate projections of temperature changes for the years 2041 to 2070, as well as the certainty of those projections.

The analysis, developed by statisticians at Ohio State University, examines groups of regional climate models, finds the commonalities between them, and determines how much weight each individual climate projection should get in a consensus climate estimate.

Through maps on the statisticians’ website, people can see how their own region’s temperature will likely change by 2070 - overall, and for individual seasons of the year.

Given the complexity and variety of climate models produced by different research groups around the world, there is a need for a tool that can analyze groups of them together, explained Noel Cressie, professor of statistics and director of Ohio State’s Program in Spatial Statistics and Environmental Statistics.

Cressie and former graduate student Emily Kang, now at the University of Cincinnati, present the statistical analysis in a paper published in the International Journal of Applied Earth Observation and Geoinformation.

“One of the criticisms from climate-change skeptics is that different climate models give different results, so they argue that they don’t know what to believe,” he said. “We wanted to develop a way to determine the likelihood of different outcomes, and combine them into a consensus climate projection. We show that there are shared conclusions upon which scientists can agree with some certainty, and we are able to statistically quantify that certainty.”

For their initial analysis, Cressie and Kang chose to combine two regional climate models developed for the North American Regional Climate Change Assessment Program. Though the models produced a wide variety of climate variables, the researchers focused on temperatures during a 100-year period: first, the climate models' temperature values from 1971 to 2000, and then the climate models' temperature values projected for 2041 to 2070. The data were broken down into blocks of area 50 kilometers (about 30 miles) on a side, throughout North America.

Averaging the results over those individual blocks, Cressie and Kang’s statistical analysis estimated that average land temperatures across North America will rise around 2.5 degrees Celsius (4.5 degrees Fahrenheit) by 2070. That result is in agreement with the findings of the United Nations Intergovernmental Panel on Climate Change, which suggest that under the same emissions scenario as used by NARCCAP, global average temperatures will rise 2.4 degrees Celsius (4.3 degrees Fahrenheit) by 2070. Cressie and Kang's analysis is for North America - and not only estimates average land temperature rise, but regional temperature rise for all four seasons of the year.

Cressie cautioned that this first study is based on a combination of a small number of models. Nevertheless, he continued, the statistical computations are scalable to a larger number of models. The study shows that climate models can indeed be combined to achieve consensus, and the certainty of that consensus can be quantified.

The statistical analysis could be used to combine climate models from any region in the world, though, he added, it would require an expert spatial statistician to modify the analysis for other settings.

The key is a special combination of statistical analysis methods that Cressie pioneered, which use spatial statistical models in what researchers call Bayesian hierarchical statistical analyses.

The latter techniques come from Bayesian statistics, which allows researchers to quantify the certainty associated with any particular model outcome. All data sources and models are more or less certain, Cressie explained, and it is the quantification of these certainties that are the building blocks of a Bayesian analysis.

In the case of the two North American regional climate models, his Bayesian analysis technique was able to give a range of possible temperature changes that includes the true temperature change with 95 percent probability.

After producing average maps for all of North America, the researchers took their analysis a step further and examined temperature changes for the four seasons. On their website, they show those seasonal changes for regions in the Hudson Bay, the Great Lakes, the Midwest, and the Rocky Mountains.

In the future, the region in the Hudson Bay will likely experience larger temperature swings than the others, they found.

That Canadian region in the northeast part of the continent is likely to experience the biggest change over the winter months, with temperatures estimated to rise an average of about 6 degrees Celsius (10.7 degrees Fahrenheit) - possibly because ice reflects less energy away from the Earth’s surface as it melts. Hudson Bay summers, on the other hand, are estimated to experience only an increase of about 1.2 degrees Celsius (2.1 degrees Fahrenheit).

According to the researchers’ statistical analysis, the Midwest and Great Lakes regions will experience a rise in temperature of about 2.8 degrees Celsius (5 degrees Fahrenheit), regardless of season. The Rocky Mountains region shows greater projected increases in the summer (about 3.5 degrees Celsius, or 6.3 degrees Fahrenheit) than in the winter (about 2.3 degrees Celsius, or 4.1 degrees Fahrenheit).

In the future, the researchers could consider other climate variables in their analysis, such as precipitation.

This research was supported by NASA’s Earth Science Technology Office. The North American Regional Climate Change Assessment Program is funded by the National Science Foundation, the U.S. Department of Energy, the National Oceanic and Atmospheric Administration, and the U.S. Environmental Protection Agency office of Research and Development.

Contact: Noel Cressie, (614) 292-2866; Cressie.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Noel Cressie | EurekAlert!
Further information:
http://www.osu.edu

More articles from Statistics:

nachricht Institutions of higher education spent more than Euro 48 billion in 2014
19.05.2016 | Statistisches Bundesamt

nachricht Microtechnology industry keen to invest and innovate
07.04.2016 | IVAM Fachverband für Mikrotechnik

All articles from Statistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>