Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano-cages ’fill up’ with hydrogen


A "cagey" strategy to stack more hydrogen in nanoscale scaffoldings made of zinc-based boxes may yield a viable approach to storing hydrogen and, ultimately, replacing fossil fuels in future automobiles, according to new results from National Institute of Standards and Technology (NIST) researchers.

Using beams of neutrons as probes, NIST scientists determined where hydrogen latches onto the lattice-like arrangement of zinc and oxygen clusters in a custom-made material known as a metal-organic framework, or MOF. Called MOF5, the particular nanoscale material studied by Taner Yildirim and Michael Hartman has four types of docking sites, including a "surprising" three-dimensional network of "nano-cages" that appears to form after other sites load up with hydrogen.

This finding, reported in Physical Review Letters,* suggests that MOF materials might be engineered to optimize both the storage of hydrogen and its release under normal vehicle operating conditions. It also suggests that MOFs might be used as templates for interlinking hydrogen nano-cages, creating materials with unusual properties due to a phenomenon known as quantum confinement. In a sense, this discovery is a bonus.

Yildirim and Hartman found that the two most stable sites in the scaffolding already offer considerable room for storing hydrogen, accounting for the interest MOFs already have attracted. Earlier studies reported that, at about –200 degrees Celsius, MOF5 could hold less than 2 percent of its weight in hydrogen.

The NIST research indicates ample room for improvement. At very low temperatures, hydrogen uptake approached 10 percent of the material’s weight. (The FreedomCar and Fuel Partnership involving the Department of Energy and the nation’s "Big 3" automakers has set a level of about 6 percent as a minimum capacity for economically viable hydrogen storage.) The bulk of the hydrogen was held in nanometer-scale cavities inside the box-like arrangements of zinc and oxygen clusters.

"Neutron diffraction measurements clearly show that the molecules are packed in a fashion similar to the way apples or oranges fill a bowl," Yildirim explains. The unexpected nano-cages introduce the potential for spillover capacity, so to speak.

Hydrogen storage levels of 10 percent are encouraging, but these results were achieved at impractically low temperatures. Yildirim and Hartman say they hope better understanding of how hydrogen molecules tether to MOFs will ultimately lead to improved materials suitable for practical applications.

Mark Bello | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>