Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-cages ’fill up’ with hydrogen

02.12.2005


A "cagey" strategy to stack more hydrogen in nanoscale scaffoldings made of zinc-based boxes may yield a viable approach to storing hydrogen and, ultimately, replacing fossil fuels in future automobiles, according to new results from National Institute of Standards and Technology (NIST) researchers.



Using beams of neutrons as probes, NIST scientists determined where hydrogen latches onto the lattice-like arrangement of zinc and oxygen clusters in a custom-made material known as a metal-organic framework, or MOF. Called MOF5, the particular nanoscale material studied by Taner Yildirim and Michael Hartman has four types of docking sites, including a "surprising" three-dimensional network of "nano-cages" that appears to form after other sites load up with hydrogen.

This finding, reported in Physical Review Letters,* suggests that MOF materials might be engineered to optimize both the storage of hydrogen and its release under normal vehicle operating conditions. It also suggests that MOFs might be used as templates for interlinking hydrogen nano-cages, creating materials with unusual properties due to a phenomenon known as quantum confinement. In a sense, this discovery is a bonus.


Yildirim and Hartman found that the two most stable sites in the scaffolding already offer considerable room for storing hydrogen, accounting for the interest MOFs already have attracted. Earlier studies reported that, at about –200 degrees Celsius, MOF5 could hold less than 2 percent of its weight in hydrogen.

The NIST research indicates ample room for improvement. At very low temperatures, hydrogen uptake approached 10 percent of the material’s weight. (The FreedomCar and Fuel Partnership involving the Department of Energy and the nation’s "Big 3" automakers has set a level of about 6 percent as a minimum capacity for economically viable hydrogen storage.) The bulk of the hydrogen was held in nanometer-scale cavities inside the box-like arrangements of zinc and oxygen clusters.

"Neutron diffraction measurements clearly show that the molecules are packed in a fashion similar to the way apples or oranges fill a bowl," Yildirim explains. The unexpected nano-cages introduce the potential for spillover capacity, so to speak.

Hydrogen storage levels of 10 percent are encouraging, but these results were achieved at impractically low temperatures. Yildirim and Hartman say they hope better understanding of how hydrogen molecules tether to MOFs will ultimately lead to improved materials suitable for practical applications.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov
http://www.ncnr.nist.gov/staff/taner/h2

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>