Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct measurement of the mass of an ultra-cool brown dwarf star

15.06.2004


An international team of astronomers, led by Hervé Bouy from the Max Planck Institute, Garching, Germany and the Observatoire de Grenoble, France, have for the first time measured the mass of an ultra-cool brown dwarf star. The team performed the measurements using four of the most powerful telescopes available. This is the first-ever mass measurement of an L-type star belonging to the new stellar class of very low-mass stars, discovered a few years ago. With a mass of 6.6% of the solar mass, this celestial object is a "failed" star, lying between stars and planets in the evolutionary scheme.



Making use of four of the most famous telescopes worldwide, an international team of astronomers made the first-ever direct measurement of the mass of a so-called L-type star. The star, named 2MASSW J0746425+2000321, is a binary star that was observed for four years with the ESO Very Large Telescope (Chile), the Keck and Gemini Telescopes (Hawaii), and the Hubble Space Telescope.

Precise observations of each component of the binary system were required to be able to compute their masses. As both stars are very close to each other, telescopes providing high-resolution images were needed. Additionally, observations had to be performed over a long period of time (four years) to follow the motion of both stars around each other. Very accurate measurements of the relative position of the individual components were made, so that the full orbit of the binary system could be reconstructed, as illustrated in the following picture. Once the orbit was known, the astronomers were able to compute the total mass of the system using Kepler’s laws. In addition, very precise measurements of the brightness of each star were needed to be able to compute the individual mass of each component of the system. The astronomers calculated the mass ratio of the system from these brightness measurements, using the theoretical models by G. Chabrier and collaborators (Centre de Recherche Astronomique de Lyon, France). Finally, the mass of each component could be determined.


Both stars of the binary system belong to the L stellar class that includes the lowest mass stars. This stellar class was discovered in 1997 and was added to the stellar classification that had remained unchanged for half a century. The L class is characterized by the formation of dust grains in their atmospheres, which strongly changes the shape of the spectrum. For the first time, Hervé Bouy and his team have directly measured the mass of a star from this new class of ultra-cool stars.

The more massive component of the system weighs 8.5% of the solar mass, and is likely to be a very low-mass star. Weighing 6.6% of the solar mass, the secondary star is clearly not a star, but a so-called "sub-stellar" object, a failed star that occupies an intermediate position between the lightest stars and the heaviest planets.

Theoretically foreseen for a long time, these sub-stellar objects called "brown dwarfs" were only discovered in 1995. Indirect techniques were conceived of to identify brown dwarf candidates; however, mass measurement is the only direct way to identify a star as a brown dwarf. Indeed, following stellar evolutionary models, the mass IS the criterion to determine whether a given object is a "true" star or a brown dwarf. A "true" star is heavy enough to, at some point, stabilize its temperature through fusion in its interior. For example, for 5 billion years our Sun has been burning hydrogen – it is thanks to this hydrogen fusion that the Sun shines – and it will go on burning hydrogen for 5 billion years more. A brown dwarf will never have such a stable life. Its brightness originates in the energy that remains from its birth; as this energy decreases, the brown dwarf becomes cooler and fainter. Direct mass measurements such as the one made by Bouy and his team, are a key to a better understanding of the physics of these fascinating objects.

Such mass measurements, however, are much more challenging than one could imagine. There are no means to measure the mass of a star in the Universe, except if the star belongs to a binary system. Additionally, binary brown dwarfs are often faint and close to each other: large telescopes are therefore required to perform such studies. These requirements make this research topic particularly challenging; the mass measurement performed by Hervé Bouy and his colleagues is thus a major step toward our understanding of these sub-stellar objects that occupy the gap between stars and planets.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release&niv3=PR200405

More articles from Physics and Astronomy:

nachricht New way to write magnetic info could pave the way for hardware neural networks
21.11.2017 | Imperial College London

nachricht From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020
21.11.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>