Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct measurement of the mass of an ultra-cool brown dwarf star

15.06.2004


An international team of astronomers, led by Hervé Bouy from the Max Planck Institute, Garching, Germany and the Observatoire de Grenoble, France, have for the first time measured the mass of an ultra-cool brown dwarf star. The team performed the measurements using four of the most powerful telescopes available. This is the first-ever mass measurement of an L-type star belonging to the new stellar class of very low-mass stars, discovered a few years ago. With a mass of 6.6% of the solar mass, this celestial object is a "failed" star, lying between stars and planets in the evolutionary scheme.



Making use of four of the most famous telescopes worldwide, an international team of astronomers made the first-ever direct measurement of the mass of a so-called L-type star. The star, named 2MASSW J0746425+2000321, is a binary star that was observed for four years with the ESO Very Large Telescope (Chile), the Keck and Gemini Telescopes (Hawaii), and the Hubble Space Telescope.

Precise observations of each component of the binary system were required to be able to compute their masses. As both stars are very close to each other, telescopes providing high-resolution images were needed. Additionally, observations had to be performed over a long period of time (four years) to follow the motion of both stars around each other. Very accurate measurements of the relative position of the individual components were made, so that the full orbit of the binary system could be reconstructed, as illustrated in the following picture. Once the orbit was known, the astronomers were able to compute the total mass of the system using Kepler’s laws. In addition, very precise measurements of the brightness of each star were needed to be able to compute the individual mass of each component of the system. The astronomers calculated the mass ratio of the system from these brightness measurements, using the theoretical models by G. Chabrier and collaborators (Centre de Recherche Astronomique de Lyon, France). Finally, the mass of each component could be determined.


Both stars of the binary system belong to the L stellar class that includes the lowest mass stars. This stellar class was discovered in 1997 and was added to the stellar classification that had remained unchanged for half a century. The L class is characterized by the formation of dust grains in their atmospheres, which strongly changes the shape of the spectrum. For the first time, Hervé Bouy and his team have directly measured the mass of a star from this new class of ultra-cool stars.

The more massive component of the system weighs 8.5% of the solar mass, and is likely to be a very low-mass star. Weighing 6.6% of the solar mass, the secondary star is clearly not a star, but a so-called "sub-stellar" object, a failed star that occupies an intermediate position between the lightest stars and the heaviest planets.

Theoretically foreseen for a long time, these sub-stellar objects called "brown dwarfs" were only discovered in 1995. Indirect techniques were conceived of to identify brown dwarf candidates; however, mass measurement is the only direct way to identify a star as a brown dwarf. Indeed, following stellar evolutionary models, the mass IS the criterion to determine whether a given object is a "true" star or a brown dwarf. A "true" star is heavy enough to, at some point, stabilize its temperature through fusion in its interior. For example, for 5 billion years our Sun has been burning hydrogen – it is thanks to this hydrogen fusion that the Sun shines – and it will go on burning hydrogen for 5 billion years more. A brown dwarf will never have such a stable life. Its brightness originates in the energy that remains from its birth; as this energy decreases, the brown dwarf becomes cooler and fainter. Direct mass measurements such as the one made by Bouy and his team, are a key to a better understanding of the physics of these fascinating objects.

Such mass measurements, however, are much more challenging than one could imagine. There are no means to measure the mass of a star in the Universe, except if the star belongs to a binary system. Additionally, binary brown dwarfs are often faint and close to each other: large telescopes are therefore required to perform such studies. These requirements make this research topic particularly challenging; the mass measurement performed by Hervé Bouy and his colleagues is thus a major step toward our understanding of these sub-stellar objects that occupy the gap between stars and planets.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release&niv3=PR200405

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>