Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Mirage Earth’ exoplanets may have burned away chances for life

04.12.2014

Planets orbiting close to low-mass stars — easily the most common stars in the universe — are prime targets in the search for extraterrestrial life.

But new research led by an astronomy graduate student at the University of Washington indicates some such planets may have long since lost their chance at hosting life because of intense heat during their formative years.


Illustration of a low-mass, M dwarf star, seen from an orbiting rocky planet.NASA / JPL

Low-mass stars, also called M dwarfs, are smaller than the sun, and also much less luminous, so their habitable zone tends to be fairly close in. The habitable zone is that swath of space that is just right to allow liquid water on an orbiting planet’s surface, thus giving life a chance.

Planets close to their host stars are easier for astronomers to find than their siblings farther out. Astronomers discover and measure these worlds by studying the slight reduction in light when they transit, or pass in front of their host star; or by measuring the star’s slight “wobble” in response to the planet’s gravity, called the radial velocity method.

But in a paper to be published in the journal Astrobiology, doctoral student Rodrigo Luger and co-author Rory Barnes, a UW research assistant professor, find through computer simulations that some planets close to low-mass stars likely had their water and atmospheres burned away when they were still forming.

“All stars form in the collapse of a giant cloud of interstellar gas, which releases energy in the form of light as it shrinks,” Luger said. “But because of their lower masses, and therefore lower gravities, M dwarfs take longer to fully collapse — on the order of many hundreds of millions of years.”

“Planets around these stars can form within 10 million years, so they are around when the stars are still extremely bright. And that’s not good for habitability, since these planets are going to initially be very hot, with surface temperatures in excess of a thousand degrees. When this happens, your oceans boil and your entire atmosphere becomes steam.”

Also boding ill for the atmospheres of these worlds is the fact that M dwarf stars emit a lot of X-ray and ultraviolet light, which heats the upper atmosphere to thousands of degrees and causes gas to expand so quickly it leaves the planet and is lost to space, Luger said.

“So, many of the planets in the habitable zones of M dwarfs could have been dried up by this process early on, severely decreasing their chance of actually being habitable.”


A side effect of this process, Luger and Barnes write, is that ultraviolet radiation can split up water into its component hydrogen and oxygen atoms. The lighter hydrogen escapes the atmosphere more easily, leaving the heavier oxygen atoms behind. While some oxygen is clearly good for life, as on Earth, too much oxygen can be a negative factor for the origin of life.

“Rodrigo has shown that this prolonged runaway greenhouse phase can produce huge atmospheres full of oxygen — like, 10 times denser than that of Venus and all oxygen,” said Barnes. “Searches for life often rely on oxygen as a tracer of extraterrestrial life — so the abiological production of such huge quantities of oxygen could confound our search for life on exoplanets.”

Luger said the working title of their paper was “Mirage Earths.”

“Because of the oxygen they build up, they could look a lot like Earth from afar — but if you look more closely you’ll find that they’re really a mirage; there’s just no water there.”

The research was funded by NASA’s Astrobiology Institute, through the Virtual Planetary Laboratory, headquartered at the UW.

For more information, contact Luger at 206-543-6276 or rodluger@gmail.com; or Barnes at 206-543-8979 or rory@astro.washington.edu. Funded under Cooperative Agreement NNH05ZDA001C.

Peter Kelley | EurekAlert!
Further information:
http://www.washington.edu/news/2014/12/02/mirage-earth-exoplanets-may-have-burned-away-chances-for-life/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>