Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Mirage Earth’ exoplanets may have burned away chances for life

04.12.2014

Planets orbiting close to low-mass stars — easily the most common stars in the universe — are prime targets in the search for extraterrestrial life.

But new research led by an astronomy graduate student at the University of Washington indicates some such planets may have long since lost their chance at hosting life because of intense heat during their formative years.


Illustration of a low-mass, M dwarf star, seen from an orbiting rocky planet.NASA / JPL

Low-mass stars, also called M dwarfs, are smaller than the sun, and also much less luminous, so their habitable zone tends to be fairly close in. The habitable zone is that swath of space that is just right to allow liquid water on an orbiting planet’s surface, thus giving life a chance.

Planets close to their host stars are easier for astronomers to find than their siblings farther out. Astronomers discover and measure these worlds by studying the slight reduction in light when they transit, or pass in front of their host star; or by measuring the star’s slight “wobble” in response to the planet’s gravity, called the radial velocity method.

But in a paper to be published in the journal Astrobiology, doctoral student Rodrigo Luger and co-author Rory Barnes, a UW research assistant professor, find through computer simulations that some planets close to low-mass stars likely had their water and atmospheres burned away when they were still forming.

“All stars form in the collapse of a giant cloud of interstellar gas, which releases energy in the form of light as it shrinks,” Luger said. “But because of their lower masses, and therefore lower gravities, M dwarfs take longer to fully collapse — on the order of many hundreds of millions of years.”

“Planets around these stars can form within 10 million years, so they are around when the stars are still extremely bright. And that’s not good for habitability, since these planets are going to initially be very hot, with surface temperatures in excess of a thousand degrees. When this happens, your oceans boil and your entire atmosphere becomes steam.”

Also boding ill for the atmospheres of these worlds is the fact that M dwarf stars emit a lot of X-ray and ultraviolet light, which heats the upper atmosphere to thousands of degrees and causes gas to expand so quickly it leaves the planet and is lost to space, Luger said.

“So, many of the planets in the habitable zones of M dwarfs could have been dried up by this process early on, severely decreasing their chance of actually being habitable.”


A side effect of this process, Luger and Barnes write, is that ultraviolet radiation can split up water into its component hydrogen and oxygen atoms. The lighter hydrogen escapes the atmosphere more easily, leaving the heavier oxygen atoms behind. While some oxygen is clearly good for life, as on Earth, too much oxygen can be a negative factor for the origin of life.

“Rodrigo has shown that this prolonged runaway greenhouse phase can produce huge atmospheres full of oxygen — like, 10 times denser than that of Venus and all oxygen,” said Barnes. “Searches for life often rely on oxygen as a tracer of extraterrestrial life — so the abiological production of such huge quantities of oxygen could confound our search for life on exoplanets.”

Luger said the working title of their paper was “Mirage Earths.”

“Because of the oxygen they build up, they could look a lot like Earth from afar — but if you look more closely you’ll find that they’re really a mirage; there’s just no water there.”

The research was funded by NASA’s Astrobiology Institute, through the Virtual Planetary Laboratory, headquartered at the UW.

For more information, contact Luger at 206-543-6276 or rodluger@gmail.com; or Barnes at 206-543-8979 or rory@astro.washington.edu. Funded under Cooperative Agreement NNH05ZDA001C.

Peter Kelley | EurekAlert!
Further information:
http://www.washington.edu/news/2014/12/02/mirage-earth-exoplanets-may-have-burned-away-chances-for-life/

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>