Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation: Magnetic Field Conductors

25.06.2014

A Catalan, German and Austrian group of physicists has developed a new technology to transfer magnetic fields to arbitrary long distances, which is comparable to transmitting and routing light in optical fibers.

Oriol Romero-Isart and his colleagues have theoretically proposed and already tested this new device experimentally. The field of possible applications is broad and includes spintronic and quantum computers among others.


A new technology transfers magnetic fields to arbitrary long distances, which is comparable to transmitting and routing light in optical fibers. Universitat Autònoma de Barcelona

In today’s high-tech world, transferring electromagnetic waves is essential for many technologies. This can be seen with information being circulated worldwide via optic fibers. However, a device capable of doing this with static magnetic fields does not exist as the transferred field rapidly decays with distance from the source. In Innsbruck, theoretical physicist Oriol Romero-Isart and his colleagues have now found a surprisingly simple solution for this problem.

Magnetic hose

“Our theoretical studies have shown that we need a material with extreme anisotropic properties to transfer and route static magnetic fields,” explains theoretical physicist Romero-Isart. This means that the material has to have extremely good permeability in one direction but zero in the perpendicular direction. Since no material exists with such extreme anisotropy, the physicists designed a different strategy: They used a ferromagnetic cylinder and wrapped it with a superconductor shell. “Superconductors are perfect magnetic insulators,” explains Romero-Isart. The researcher’s calculations showed that a structure of alternated superconducting and soft ferromagnetic concentric cylindrical layers could transfer more than 90% of the magnetic field to any distance. Remarkably, the researchers also calculated that up to 75 % of the magnetic field can be transferred by using only a bilayer scheme – a ferromagnetic core with a superconducting outer layer.

Proof-of-principle experiment

After theoretically proposing this scheme, the team experimentally demonstrated such a device. They wrapped a ferromagnet made of cobalt and iron with a high-temperature superconductor and conducted several tests. “Even though our technical set-up wasn’t perfect, we could show that the static magnetic field is transferred well by the hose,” says Prof. Sanchez, the Catalan group leader of Oriol Romero-Isart’s collaborators.
This new method could be used, for example, for future quantum technology coupling distant quantum systems magnetically, applications in spintronics and other nano technologies.

The work of the physicists from the Universitat Autonoma de Barcelona, the Max-Planck-Institute of Quantum Optics, the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences and the Institute for Theoretical Physics of the University of Innsbruck has been published in the renowned journal Physical Review Letters. The project is funded by the European Union and the European Research Council among others.

Publication: Long-distance Transfer and Routing of Static Magnetic Fields. C. Navau, J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez. Phys. Rev. Lett. 112, 253901
DOI: 10.1103/PhysRevLett.112.253901 (arXiv:1304.6300v2)

Contact
Univ.-Prof. Dr. Oriol Romero-Isart
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
phone: +43 512 507 4730
email: oriol.romero-isart@uibk.ac.at
web: http://iqoqi.at/en/group-page-romero-isart

Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.112.253901 - Long-distance Transfer and Routing of Static Magnetic Fields. C. Navau, J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez. Phys. Rev. Lett. 112, 253901
http://arxiv.org/abs/1304.6300v2 - arXiv:1304.6300v2
http://iqoqi.at/en/group-page-romero-isart - Quantum Nanophysics, Optics and Information

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht A blueprint for clearing the skies of space debris
17.04.2015 | RIKEN

nachricht Quantum Physics – Hot and Cold at the Same Time
17.04.2015 | Ruprecht-Karls-Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>