Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble sees magnetic monster in erupting galaxy

21.08.2008

NGC 1275 is one of the closest giant elliptical galaxies and lies at the centre of the Perseus Cluster of galaxies. It is an active galaxy, hosting a supermassive black hole at its core, which blows bubbles of radio-wave emitting material into the surrounding cluster gas. Its most spectacular feature is the lacy filigree of gaseous filaments reaching out beyond the galaxy into the multi-million degree X-ray emitting gas that fills the cluster.

These filaments are the only visible-light manifestation of the intricate relationship between the central black hole and the surrounding cluster gas. They provide important clues about how giant black holes affect their surrounding environment.

A team of astronomers using the NASA/ESA Hubble Space Telescope Advanced Camera for Surveys have for the first time resolved individual threads of gas which make up the filaments. The amount of gas contained in a typical thread is around one million times the mass of our own Sun. They are only 200 light-years wide, are often surprisingly straight, and extend for up to 20 000 light-years. The filaments are formed when cold gas from the galaxy’s core is dragged out in the wake of rising bubbles blown by the black hole.

It has been a challenge for astronomers to understand how the delicate structures withstood the hostile high-energy environment of the galaxy cluster for more than 100 million years. They should have heated up, dispersed, and evaporated over a very short period of time, or collapsed under their own gravity to form stars. Even more puzzling is the fact that they haven’t been ripped apart by the strong tidal pull of gravity in the cluster’s core.

A new study led by Andy Fabian from the University of Cambridge, UK, published in Nature on 21 August 2008 proposes that the magnetic fields hold the charged gas in place and resist forces that would distort the filaments. This skeletal structure has been able to contain and suspend these peculiarly long threads for over 100 million years. “We can see that the magnetic fields are crucial for these complex filaments - both for their survival and for their integrity”, said Fabian.

The new Hubble data also allowed the strength of the magnetic fields in the filaments to be determined from their size. Thinner filaments are more fragile, requiring stronger magnetic fields for support. However, the finer the filaments, the more difficult they are to observe.

The filamentary system in NGC 1275 provides the most striking example of the workings of extragalactic magnetic fields so far and is a spectacular by-product of the complex interaction between the cluster gas and the supermassive black hole at the galaxy’s heart. Similar networks of filaments are found around many other, even more remote, central cluster galaxies. They cannot be observed in anything like the detail of NGC 1275, so the team will apply the understanding gained here to interpret observations of these more distant galaxies.

Lars Christensen | alfa
Further information:
http://ww.eso.org
http://www.spacetelescope.org/news/html/heic0817.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>