Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ears can’t hear when special sensory cells don’t stay ’quiet’

02.05.2003


The death of sensory hair cells when they try to multiply suggests need for caution in attempts to restore many kinds of lost cells through gene therapy



Researchers may have found a link between progressive hearing loss and a gene called p19Ink4d (Ink4d), according to results of a study that measured loss of hearing in mice lacking that gene. Normally, the Ink4d gene keeps healthy cells "quiet" – from inappropriately dividing.

Mice lacking the Ink4d gene become progressively hearing impaired because the absence of Ink4d causes certain cells in their inner ears to attempt to divide. However, this inappropriate attempt to divide causes these cells, called sensory hair cells, to instead commit suicide, according to a team of researchers that includes two St. Jude investigators and scientists from the House Ear Institute in Los Angeles, CA.


This finding in mice represents a potentially unrecognized form of progressive hearing loss, a problem that also occurs in humans, according to the investigators. If problems in Ink4d also occur in humans, this finding could explain the slow development of deafness in some people. In the absence of the braking effect of normally functioning Ink4d genes, sensory hair cells in people’s ears might attempt to divide, setting off a biological response called apoptosis, or programmed cell death.

This observation in mice suggests that a person who lacks one or both copies of Ink4d, or who has Ink4d genes that are not very active, might suffer progressive hair cell death and experience hearing loss, just as mice do, according to Neil Segil, Ph.D., a researcher at the House Ear Institute and a research associate professor at the University of Southern California Medical School (Los Angeles). Segil, a senior author of a paper reporting these results, published in the May 2003 issue of Nature Cell Biology, speculates that the lack of one or both Ink4d genes makes the person more susceptible to hair cell loss from a variety of different traumas, such as loud noise or certain medicines. According to this theory, trauma could stimulate hair cells to attempt to divide, and in turn, lead to apoptosis. This suggests that a person with a full set of Ink4d genes might be less susceptible to loud noise than a person with only half the set.

"It might be possible one day to screen a person for susceptibility to hearing loss by measuring the level of Ink4d they have," Segil said. "We could use that information to warn people they are at increased risk for hearing loss due to trauma."

The requirement that these cells must remain "quiet" (not divide) may mean that gene therapy aimed at replacing lost sensory hair cells through cell division to restore hearing might only stimulate these cells to try undergo apoptosis and die, thus worsening the condition, according to Martine Roussel, Ph.D., a co-author of the paper reporting these results and a member of the St. Jude Department of Genetics and Tumor Cell Biology, and a professor in the Department of Molecular Sciences at the University of Tennessee (Memphis).

Sensory hair cells respond to sound waves by setting off electric impulses in nerves that help generate the sense of hearing. Rows of these cells form during development of the embryo and, together with other cells called supporting cells, make up the organ of Corti in the inner ear, according to Roussel. These cells normally do not multiply after they are formed in the embryo; therefore, they can’t multiply to replace lost or damaged sensory hair cells later in life. However, in the absence of Ink4d, they may attempt to divide.

"In fact, in the mice that lacked Ink4d, hair cells sometimes tried to divide," Roussel said. "This led to apoptosis and hearing loss in these mice."

The dominant role of Ink4d in sensory hair cells is unique. In other parts of the brain, nerve cell division is controlled in part by either Ink4d or by another gene, Kip1. In these cells, the loss of either gene does not completely take the brakes off of cell division. However, the researchers found this was not the case in the inner ear, where the loss of Ink4d alone in mice lead to failed attempts at cell division and, ultimately, progressive death of sensory hair cells.

The researchers studied mice that lacked both copies of Ink4d (Ink4d -/- mice; normally, one copy of each gene is inherited from each parent). Using biochemical techniques that highlighted hair cells under the microscope, they observed hair cell loss in mice that were 2.5 weeks old. When the Ink4d -/- mice were seven weeks old, hair cell loss had progressed even further. Specifically, the innermost of four rows of sensory hair cells suffered a loss of 43.3% of cells, and the three outer rows suffered losses of 27.8%, 8.1%, and 8.5%, respectively. Mice that had both copies of the Ink4d gene (Ink4d +/+) did not suffer loss of sensory hair cells in the organ of Corti.

The researchers also used sound measurements to test how well the mice responded to sound. One test, called "distortion product otoacoustic emission" (DPOAE) measures sounds generated by the hair cells themselves in response to being stimulated by sound waves coming into the inner ear. The DPOAE test was performed at weeks 7 and 15 in both Ink4d +/+ and Ink4d -/- mice. The ears of normal mice produced normal responses to sound waves entering the ear, but the ears of mice lacking Ink4d did not respond to this stimulation.

In addition, the investigators used a test called "auditory brainstem response" (ABR) to compare the nerve response to sound in mice with and without Ink4d. The ABR test studies the electric impulses of the auditory nerve pathways from the ear in response to clicks or short bursts of sound. Specifically, it measures the so-called "sound pressure level (SPL)," or the strength a stimulus must be before there is a measurable response in these nerves. At 7 weeks of age the Ink4d -/- mice had responses similar to Ink4d +/+ mice. However, by week 15, the sound level had to be increased significantly before the hair cells of the Ink4d -/- mice responded.

"The fact that mice lacking Ink4d lost so much of their sense of hearing by week fifteen was a result of the loss of many of their sensory hair cells," Roussel said The study’s findings suggest that progressive deafness due to the absence or mutation of Ink4d might respond to gene therapy. However, Roussel cautions that such therapy could be dangerous.

"Some cells, like the sensory hair cells of the inner ear, are not designed to reproduce once they are formed in the embryo," Roussel said. "It’s a delicate balance between stimulating cells to reproduce to replace lost cells, and setting off unintended apoptosis, which could make things much worse."

The lead author of the paper is Ping Chen, Ph.D., a Senior Research Associate at the House Ear Institute (HEI). Other authors of the paper include Frederique Zindy (St. Jude), Caroline Abdala, and Xiankui Li (House Ear Institute), and Feng Liu, Graduate Fellow (USC). This work was supported by the National Institutes of Health, ALSAC, and the Oberkotter Foundation.


About St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay.


About the House Ear Institute

The House Ear Institute (HEI) is a private, non-profit 501(c)(3) organization dedicated to advancing hearing science through research and education to improve quality of life. Established in 1946 by Howard P. House, M.D., as the Los Angeles Foundation of Otology, and later renamed for its founder, the House Ear Institute has been engaged in the scientific exploration of the auditory system from the ear canal to the cortex of the brain for more than 55 years.

Our scientists continue to explore the developing ear and ear diseases at the cell and molecular level, as well as the complex ear-brain interaction. They are also working to improve hearing aids and auditory implants, clinical treatments and intervention methods. For information on the House Ear Institute, please call (213) 483-4431 or visit the Website at www.hei.org.


Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/
http://www.hei.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>