Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidative Stress Is Significant Predictor for Hip Fracture, Research Shows

13.08.2014

Oxidative stress is a significant predictor for hip fracture in postmenopausal women, according to new research led by University of Cincinnati (UC) epidemiologists.

The research, appearing online ahead of print in the Journal of Bone and Mineral Research, was led by Tianying Wu, MD, PhD, an assistant professor in the UC College of Medicine Department of Environmental Health, and Shuman Yang, a postdoctoral fellow in the department. They collaborated with researchers from the Harvard School of Public Health and Harvard Medical School.


"To our knowledge, this is the first prospective study among postmenopausal women demonstrating that oxidative stress was a significant predictor for hip fracture,” says Wu, the study’s corresponding author. 


Oxidative stress is defined as physiological stress on the body that is caused by the cumulative damage done by free radicals, which are inadequately neutralized by antioxidants. Free radicals are unstable molecules that react with other substances in the human body to damage cells or organs.


Oxidative stress occurs naturally, but environmental factors such as natural and artificial radiation, toxins in air, food and water and miscellaneous sources such as tobacco smoke can add to the overall burden and defeat the body’s antioxidant defenses.


The researchers assessed oxidative stress by measuring fluorescent oxidation products (FlOP) in blood plasma. FlOP reflects a mixture of oxidation products from lipids, proteins and DNA and can be measured by a fluorescent spectrophotometer.


Researchers studied participants in the Nurses’ Health Study, which began in 1976 with funding from the National Institutes of Health (NIH). Participants are female nurses who periodically respond to questionnaires and submit samples.


The researchers studied 996 women aged 60 or older at baseline blood collection (1989-1990). Plasma FlOPs were measured at three excitation/emission wavelengths: 360/420 nm (nanometers), named as FlOP_360; 320/420 nm, named as FlOP_320; and 400-475 nm, named as FlOP_400.


FlOP_360 represents oxidation products that are generated from oxidized phospholipids  or from lipid oxidation products reacting with proteins. FlOP_320 is formed when oxidation products such as lipid hydroperoxides, aldehydes and ketones react with DNA in the presence of metals. FlOP_400 reflects the interaction between malondialdehyde (a specific marker for lipid oxidation), proteins and phospholipids.


Of the three wavelengths, researchers found that baseline levels of FlOP_320 products predicted risk of future hip fracture in the study cohort. (No association was found with FlOP_360 and FlOP_400.) Increased FlOP_320 was associated with greater risk of hip fracture; women in the upper 30 percent of FlOP_320 readings were found to have 2.67 times the risk of hip fractures of those in the bottom 30 percent. 


"Because FlOP_320 is generated in the presence of metals, its strong association with hip fractures may reflect the co-existing effect of reactive oxygen species and heavy metals,” says Wu, who notes that the other FlOP products can be generated without metals.


Hip fracture is associated with substantial cost, as well as higher risk of disability, co-morbidities and mortality than any other fractures. Current fracture risk assessment uses traditional risk factors such as age and presence of osteoporosis, but Wu sees FlOP_320 playing an important role in risk assessment.


"If our findings are confirmed in other studies, adding this marker into the existing fracture assessment model could improve the prediction of hip fracture in postmenopausal women,” she says.


The study was funded by grants from the American Heart Association, the NIH’s National Heart, Lung and Blood Institute and National Cancer Institute and the UC Center for Environmental Genetics, funded by the NIH’s National Institute of Environmental Health Sciences.

Keith Herrell | Eurek Alert!
Further information:
http://healthnews.uc.edu/news/?/24960/

Further reports about: DNA Environmental Health Oxidative Stress blood fracture fractures hip phospholipids proteins radicals

More articles from Health and Medicine:

nachricht Understanding the Body’s Response to Worms and Allergies
24.04.2015 | University of Manchester

nachricht Caring for blindness: A new protein in sight?
22.04.2015 | NSERM (Institut national de la santé et de la recherche médicale)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>