Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings reveal how influenza virus hijacks human cells

05.02.2009
Scientists provide atomic resolution details of a promising drug target in influenza virus

Influenza is and remains a disease to reckon with. Seasonal epidemics around the world kill several hundred thousand people every year.

In the light of looming pandemics if bird flu strains develop the ability to infect humans easily, new drugs and vaccines are desperately sought. Researchers at the European Molecular Biology Laboratory (EMBL) and the joint Unit of Virus Host-Cell Interaction (UVHCI) of EMBL, the University Joseph Fourier (UJF) and the National Centre for Scientific Research (CNRS), in Grenoble, France, have now precisely defined an important drug target in influenza.

In this week’s Nature they publish a high-resolution image of a crucial protein domain that allows the virus to hijack human cells and multiply in them.

When the influenza virus infects a host cell its goal is to produce many copies of itself that go on to attack even more cells. A viral enzyme, called polymerase, is key to this process. It both copies the genetic material of the virus and steers the host cell machinery towards the synthesis of viral proteins. It does this by stealing a small tag, called a cap, from host cell RNA molecules and adding it onto its own. The cap is a short extra piece of RNA, which must be present at the beginning of all messenger RNAs (mRNAs) to direct the cell's protein-synthesis machinery to the starting point. The viral polymerase binds to host cell mRNA via its cap, cuts the cap off and adds it to the beginning of its own mRNA – a process known as ‘cap snatching’. But exactly how the polymerase achieves this and which of the three subunits of the enzyme does what, has remained controversial.

Researchers of the groups of Rob Ruigrok at the UVHCI and Stephen Cusack at EMBL have now discovered that part of a polymerase subunit called PA is responsible for cleaving the cap off the host mRNA.

“Our results came as a big surprise, because everybody thought that the cleaving activity resides in a different part of the polymerase,” explains Rob Ruigrok, Vice-Director of the UVHCI.

“These new insights make PA a promising antiviral drug target. Inhibiting the cleaving of the cap is an efficient way to stop infection, because the virus can no longer multiply. Now we know where to focus drug design efforts,” adds Stephen Cusack, Head of EMBL Grenoble and Director of the UVHCI.

The researchers produced crystals of the crucial PA domain and examined them with the powerful X-ray beams of the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-resolution image of the domain reveals the individual amino acids that constitute the active site responsible for cleaving the RNA; information that could guide the design of future antiviral drugs.

Only a few months ago the same group of scientists had already identified another key part of the influenza polymerase; a domain in the subunit called PB2 that recognises and binds to the host cap. Taken together the two findings provide a close-to-complete picture of the cap snatching mechanism that allows the influenza virus to take control over human cells.

The research was funded by the European Commission, as part of the FP6 initiative FLUPOL, and the French Agence National de Recherche, as part of the initiative FLU INTERPOL.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>