Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young researcher discovers source of disco clams' light show

25.06.2014

Silica nanospheres behind clams' mirrored lips

Four years after falling in love with the disco clam – a cute little mollusk known for its underwater light show – Lindsey Dougherty has discovered the secret of its mirrored lips.


The disco or electric clam, Ctenoides ales, continually flashes light along the lip margins of its mantle. UC Berkeley graduate student Lindsey Dougherty discovered that the mirrored lips are composed of packed nanospheres ideal for reflecting the blue light prevalent underwater.

Credit: Lindsey Dougherty, UC Berkeley

A dive instructor and University of California, Berkeley, graduate student, Dougherty first encountered the two-inch clam in 2010 while diving with her mother and sister in Wakatobi, Indonesia. She and her sister even did a bit of underwater disco dancing to the clam's flashing beat.

"I've dived with humpback whales and great white sharks," said Dougherty, who first learned to dive at age 14 and taught diving in Zanzibar. "But when I saw the disco clam, I was enamored. I said then, 'I'm going to do a Ph.D. on the disco clam.'"

... more about:
»Indonesia »clam »dive »lip »mollusk »structure »tropical »underwater

It didn't take long for her to confirm that the flashing was not, as most people assumed, a form of bioluminescence – a chemical reaction inside animals like plankton that produces light similar to that of a glow stick. Instead, she found, the edge of the clam's mantle lip is highly reflective on one side. When the clam unfurls its lip – typically twice a second – the millimeter-wide mirror is revealed and reflects the ambient light, like a disco ball.

In this week's issue of the British Journal of the Royal Society Interface, Dougherty reports the unusual and perhaps unique structure of this mirrored lip.

The inside of the clam's lip is packed with tiny spheres of silica, only 340 nanometers in diameter, that are ideal reflectors, particularly of the blue light that penetrates deeper into seawater than does red light. The outside of the lip contains no silica nanospheres, so when the lip is furled, no light is reflected.

By repeatedly unfurling and furling the lip, the clam produces a continual rippling light show. The non-reflective back of the lip strongly absorbs blue light, so it appears dark and makes the contrast between the sides even more striking.

Dougherty used high speed video, transmission electron microscopy, spectrometry, energy dispersive x-ray spectroscopy and computer modeling to study the detailed internal structure of the margin of the clam's lip. She was assisted by colleagues Roy Caldwell, UC Berkeley professor of integrative biology; Sönke Johnsen of Duke University; and N. Justin Marshall of the University of Queensland, Brisbane, Australia. She could find no other instance of animals using silica nanospheres as flashing reflectors, though the white color of several insects apparently comes from a layer of silica that reflects white light.

The big question, Dougherty said, is why the clam flashes at all.

Called Ctenoides ales and sometimes referred to as the electric clam, disco clams are found in tropical areas of the Pacific Ocean, living in crevices in reefs and typically in clusters of two or more. Light is dim and blue-green at the clams' typical depth, which ranges from 3 to 50 meters (10-150 feet), but their rippling mirrored lips are visible even without artificial illumination. Dougherty said the question she is exploring is whether the clam is trying to attract prey, mostly plankton, or other clams and potential breeding partners; or if it is trying to scare away predators.

In ongoing experiments in Caldwell's lab, she is studying the structure of the clam's eyes – all 40 of them – to see whether they can even see the disco light. She also is raising clams in tanks to determine if they signal one another visually or chemically, and is testing their responses to fake predators.

The field work was conducted at Lizard Island Research Station in Australia and the Raja Ampat Research and Conservation Centre and Lembeh Resort in Indonesia.

Robert Sanders | Eurek Alert!

Further reports about: Indonesia clam dive lip mollusk structure tropical underwater

More articles from Life Sciences:

nachricht Tracking the American Woodcock
28.07.2015 | University of Arkansas, Fayetteville

nachricht Possible Path Toward First Anti-MERS Drugs
28.07.2015 | American Crystallographic Association (ACA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>