Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video games lead to new paths to treat cancer, other diseases

16.02.2012
The cure for cancer comes down to this: video games.

In a research lab at Wake Forest University, biophysicist and computer scientist Samuel Cho uses graphics processing units (GPUs), the technology that makes videogame images so realistic, to simulate the inner workings of human cells.

"If it wasn't for gamers who kept buying these GPUs, the prices wouldn't have dropped, and we couldn't have used them for science," Cho says.

Now he can see exactly how the cells live, divide and die.

And that, Cho says, opens up possibilities for new targets for tumor-killing drugs.

Cho's most recent computer simulation, of a critical RNA molecule that is a component of the human telomerase enzyme, for the first time shows hidden states in the folding and unfolding of this molecule, giving scientists a far more accurate view of how it functions. The results of his research appear in the Journal of the American Chemical Society. Cho worked with colleagues from the University of Maryland and Zhejiang University in China for this study.

The human telomerase enzyme is found only in cancerous cells. It adds tiny molecules called telomeres to the ends of DNA strands when cells divide – essentially preventing cells from dying.

"The cell keeps reproducing over and over, and that's the very definition of cancer," Cho says. "By knowing how telomerase folds and functions, we provide a new area for researching cancer treatments."

A new drug would stop the human telomerase enzyme from adding onto the DNA, so the tumor cell dies.

Cho, an assistant professor of physics and computer science, has turned his attention to videogaming technology and the bacterial ribosome – a molecular system 200 times larger than the human telomerase enzyme RNA molecule. His research group has begun to use graphics cards called GPUs to perform these cell simulations, which is much faster than using standard computing.

"We have hijacked this technology to perform simulations very, very quickly on much larger biomolecular systems," Cho says.

Without the GPUs, Cho estimated it would have taken him more than 40 years to program that simulation.

Now, it will take him a few months.

About Wake Forest University

Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University's graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment. Learn more about Wake Forest University at www.wfu.edu

Katie Neal | EurekAlert!
Further information:
http://www.wfu.edu

Further reports about: DNA DNA strand RNA RNA molecule human cell molecular system telomerase enzyme

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>