Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMMS scientists show that monarch butterflies employ a magnetic compass during migration

25.06.2014

Study published in Nature Communications finds inclination compass in monarchs responds to UVA light

Each fall millions of monarch butterflies use a sophisticated navigation system to transverse 2,000 miles from breeding sites across the eastern United States to an overwintering habitat in specific groves of fir trees in central Mexico.

Scientists at the University of Massachusetts Medical School and Worcester Polytechnic Institute have identified a new component of this complex system. They reported in Nature Communications that monarchs use a light-dependent, inclination magnetic compass to help them orient southward during migration.

"Taken as a whole, our study reveals another fascinating aspect of the monarch butterfly migratory behavior," said senior study author Steven Reppert, MD, the Higgins Family Professor of Neuroscience and distinguished professor of neurobiology at UMass Medical School.

"Greater knowledge of the mechanisms underlying the fall migration may well aid in its preservation, currently threatened by climate change and by the continuing loss of milkweed and overwintering habitats. A new vulnerability to now consider is the potential disruption of the magnetic compass in the monarchs by human-induced electromagnetic noise, which can also affect geomagnetic orientation in migratory birds."

Co-author Robert Gegear, PhD, assistant professor of biology and biotechnology at WPI, explained, "Our study shows that monarchs use a sophisticated magnetic inclination compass system for navigation similar to that used by much larger-brained migratory vertebrates such as birds and sea turtles."

Monarchs use a time-compensated sun compass in their antenna to help them make their 2,000 mile migratory journey to overwintering sites. During the absence of daylight cues, such as under dense cloud cover, migrants have been, surprisingly, seen flying in the expected southerly direction. It's been hypothesized that monarchs use geomagnetic cues to help navigate when day light cues are unavailable to them during migration.

Previous attempts by scientists to isolate use of an internal inclination compass in monarchs have yielded conflicting or unconvincing results. These studies, however, may not have accounted for the possibility that the magnetic compass was influenced by ultraviolet light that can penetrate cloud cover.

Given the ability of monarch cryptochromes (CRY), a class of proteins that are sensitive to ultraviolet A/blue light, to restore a light-dependent magnetic response in CRY-deficient Drosophila, Reppert and colleagues suspected that monarchs also possessed a light-dependent magnetic compass.

Using flight simulators equipped with artificial magnetic fields, Patrick Guerra, PhD, a postdoctoral fellow in the Reppert lab, examined monarch flight behavior under diffuse white light conditions. He found that tethered monarchs in the simulators oriented themselves in a southerly direction. Further tests in the simulator revealed that the butterflies used the inclination angle of Earth's magnetic field to guide their movement. Reversing the direction of the inclination caused the monarchs to orient in the opposite direction, to the north instead of the south.

To test the light-dependence of the monarch's magnetic compass, Dr. Guerra applied a series of wavelength blocking filters to the lights in the simulator. Monarchs exposed to light only in the wavelength range above 420nm exhibited a lack of direction by flying in circles. Monarchs exposed to light in the wavelength range above 380nm showed clear signs of directional flight. These tests showed that the monarch's magnetic compass, and thus directional flight, was dependent on exposure to light wavelengths (380nm to 420nm) found in the ultraviolet A/blue light spectral range.

Together, these results provide the first demonstration that the monarch butterfly uses a light-dependent, inclination compass during its long journey. It is also the first evidence of such a navigational tool in a long-distance migratory insect.

"For migratory monarchs, the inclination compass may serve as an important back up system when daylight cues are unavailable," Guerra said. "It may also augment hand-in-hand with the time-compensated sun compass to provide orientation and directionality throughout the migration process."

The next step for Reppert and colleagues will be to evaluate the molecular and genetic mechanisms of magneto-reception in the monarch butterfly and the involvement of CRYs.

###

About the University of Massachusetts Medical School

The University of Massachusetts Medical School (UMMS), one of five campuses of the University system, comprises the School of Medicine, the Graduate School of Biomedical Sciences, the Graduate School of Nursing, a thriving research enterprise and an innovative public service initiative, Commonwealth Medicine. Its mission is to advance the health of the people of the commonwealth through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. In doing so, it has built a reputation as a world-class research institution and as a leader in primary care education. The Medical School attracts more than $240 million annually in research funding, placing it among the top 50 medical schools in the nation. In 2006, UMMS's Craig C. Mello, PhD, Howard Hughes Medical Institute Investigator and the Blais University Chair in Molecular Medicine, was awarded the Nobel Prize in Physiology or Medicine, along with colleague Andrew Z. Fire, PhD, of Stanford University, for their discoveries related to RNA interference (RNAi). The 2013 opening of the Albert Sherman Center ushered in a new era of biomedical research and education on campus. Designed to maximize collaboration across fields, the Sherman Center is home to scientists pursuing novel research in emerging scientific fields with the goal of translating new discoveries into innovative therapies for human diseases.

Jim Fessenden | Eurek Alert!
Further information:
http://www.umassmed.edu

Further reports about: Medicine butterfly monarchs ultraviolet wavelength

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>