Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going from ulcers to cancer

26.08.2008
Researchers have uncovered a big clue as to why some of the bacteria that cause stomach ulcers pose a greater risk for serious problems like stomach cancer than others; it turns out these bacteria can exploit the surrounding stomach cells to protect them from the immune system.

Helicobacter pylori is a bacterial strain that can infect the human stomach and induce inflammation, ulcers, and potentially even stomach cancer. However, only a small fraction of H. pylori infections ultimately lead to cancer, leading researchers to figure out what biological events will trigger this path.

One type of H. pylori strain that seems to increase disease risk is the cag+ strain, which contains a set of proteins that allows it to inject bacterial proteins into cells following attachment to the stomach lining; this interaction between bacteria and gastric cells may be a key contributor to chronic damage.

Richard Peek and colleagues investigated a cag+ strain in mouse models of H. pylori infection and found that a protein called CagE could induce gastric cells to turn on a receptor called Decay-accelerating factor (DAF); DAF acts to remove nearby immune proteins that can kill cells to prevent unwanted immune damage.

In essence, the bacteria use the DAF receptor on the host cell they're attached to like a bodyguard to protect them from the immune system. Peek and colleagues also note that by continually inducing DAF expression, H. pylori creates an environment of persistent inflammation that can reduce the threshold required for more serious diseases to develop.

From the JBC article: "Regulation of the Helicobacter pylori cellular receptor Decay-accelerating Factor" by Daniel O'Brien, Judith Romero-Gallo, Barbara G. Schneider, Rupesh Chaturvedi, Alberto Delgado, Elizabeth J. Harris, Uma Krishna, Seth R. Ogden, Dawn A. Israel, Keith T. Wilson, and Richard M. Peek Jr

Article Link: http://www.jbc.org/cgi/content/abstract/M801144200v1

Corresponding Author: Richard M. Peek Jr., Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN; Tel: 615-322-5200, Email: Richard.peek@vanderbilt.edu

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 11,900 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>