Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going from ulcers to cancer

26.08.2008
Researchers have uncovered a big clue as to why some of the bacteria that cause stomach ulcers pose a greater risk for serious problems like stomach cancer than others; it turns out these bacteria can exploit the surrounding stomach cells to protect them from the immune system.

Helicobacter pylori is a bacterial strain that can infect the human stomach and induce inflammation, ulcers, and potentially even stomach cancer. However, only a small fraction of H. pylori infections ultimately lead to cancer, leading researchers to figure out what biological events will trigger this path.

One type of H. pylori strain that seems to increase disease risk is the cag+ strain, which contains a set of proteins that allows it to inject bacterial proteins into cells following attachment to the stomach lining; this interaction between bacteria and gastric cells may be a key contributor to chronic damage.

Richard Peek and colleagues investigated a cag+ strain in mouse models of H. pylori infection and found that a protein called CagE could induce gastric cells to turn on a receptor called Decay-accelerating factor (DAF); DAF acts to remove nearby immune proteins that can kill cells to prevent unwanted immune damage.

In essence, the bacteria use the DAF receptor on the host cell they're attached to like a bodyguard to protect them from the immune system. Peek and colleagues also note that by continually inducing DAF expression, H. pylori creates an environment of persistent inflammation that can reduce the threshold required for more serious diseases to develop.

From the JBC article: "Regulation of the Helicobacter pylori cellular receptor Decay-accelerating Factor" by Daniel O'Brien, Judith Romero-Gallo, Barbara G. Schneider, Rupesh Chaturvedi, Alberto Delgado, Elizabeth J. Harris, Uma Krishna, Seth R. Ogden, Dawn A. Israel, Keith T. Wilson, and Richard M. Peek Jr

Article Link: http://www.jbc.org/cgi/content/abstract/M801144200v1

Corresponding Author: Richard M. Peek Jr., Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN; Tel: 615-322-5200, Email: Richard.peek@vanderbilt.edu

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 11,900 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>