Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test spots early signs of inherited metabolic disorders

09.01.2012
A team of scientists, led by researchers at the University of California, San Diego School of Medicine and Zacharon Pharmaceuticals, have developed a simple, reliable test for identifying biomarkers for mucopolysaccharidoses (MPS), a group of inherited metabolic disorders that are currently diagnosed in patients only after symptoms have become serious and the damage possibly irreversible.

The findings will be published online January 8 in the journal Nature Chemical Biology.

MPS is caused by the absence or malfunctioning of a lysosomal enzyme required to break down and recycle complex sugar molecules called glycosaminoglycans, which are used to build bone, tendons, skin and other tissues. If not degraded and removed, glycosaminoglycans can accumulate in cells and tissues, resulting in progressive, permanent damage affecting appearance, physical abilities, organ function and often mental development in young children. The effects range from mild to severe.

There are 11 known forms of MPS, each involving a different lysosomal enzyme. A number of treatments exist, including enzyme replacement therapy and hematopoietic stem cell transplantation, but efficacy depends upon diagnosing the disease and its specific form as early as possible. That has been problematic, said Jeffrey D. Esko, PhD, professor in the Department of Cellular and Molecular Medicine and co-director of the Glycobiology Research and Training Center at UC San Diego.

"The typical time from seeing first symptoms to diagnosis of MPS is about three years. Since the early signs of disease are common childhood issues like ear infections and learning disorders, the disease is usually not immediately recognized," Esko said.

"A child often has multiple visits with their pediatrician. Eventually they are referred to a metabolic disease specialist, where rare diseases are considered. It takes an expert to identify MPS and its most likely form in each patient. Every subclass of MPS has its own specific diagnostic test, so developing better diagnostics is an essential part of effective treatment. "

In their paper, the scientists describe an innovative method to detect tell-tale carbohydrate structures specific to glycosaminoglycans in the cells, blood and urine of MPS patients. The biomarker assay identifies all known forms of the disease.

Esko is collaborating with Zacharon Pharmaceuticals, a San Diego-based biotechnology company, to develop a commercial diagnostic assay for differentiating forms of MPS from urine and blood samples, a screening test for newborns and a tool for measuring the biochemical response of MPS patients to existing and novel therapies.

"Since the severity of the disease is highly variable among patients, this could provide a tool that a doctor can use to optimize dosing or treatment," said Brett Crawford, Vice President for Research at Zacharon. "Currently, all patients are treated with the same dose of drug."

The biomarker test may also be used to discover new forms of MPS and better characterize existing ones.

Co-authors include Roger Lawrence and William C. Lamanna, UCSD Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center; Jillian R. Brown, James R. Beitel and Brett E. Crawford, Zacharon Pharmaceuticals; Geert-Jan Boones and Kanar Al-Mafraji, University of Georgia, Athens.

Funding for this research came, in part, from the National Institutes of Health, a Kirschstein National Research Service Award and the National MPS Society.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>