Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study by WHOI Scientists Provides Baseline Measurements of Carbon in Arctic Ocean

22.05.2012
Scientists from the Woods Hole Oceanographic Institution (WHOI) have conducted a new study to measure levels of carbon at various depths in the Arctic Ocean.
The study, recently published in the journal Biogeosciences, provides data that will help researchers better understand the Arctic Ocean’s carbon cycle—the pathway through which carbon enters and is used by the marine ecosystem. It will also offer an important point of reference for determining how those levels of carbon change over time, and how the ecosystem responds to rising global temperatures.

“Carbon is the currency of life. Where carbon is coming from, which organisms are using it, how they're giving off carbon themselves—these things say a lot about how an ocean ecosystem works,” says David Griffith, the lead author on the study. “If warming temperatures perturb the Arctic Ocean, the way that carbon cycles through that system may change.”

Griffith’s team sampled suspended particles of organic matter, as well as organic carbon and carbon dioxide (CO2) dissolved into the surrounding water. This is the first time that researchers have focused broadly on measuring multiple types of carbon at the same time and place in the Arctic Ocean—due to its remote location and the challenges of operating in sea ice, few comprehensive carbon surveys had been conducted there before this study.

Griffith and his colleagues conducted their fieldwork in 2008 aboard the Canadian Coast Guard icebreaker Louis S. St. Laurent. At two different spots in the Canada Basin, an area northwest of the Canadian coast, they gathered samples from 24 depths ranging from the surface to the ocean floor 3800 meters (roughly 12,500 feet) below.

Collecting samples at those intervals was necessary, Griffith says, because the Arctic Ocean is separated into distinct layers, each with its own unique carbon characteristics. At the surface is a freshwater layer from river runoff and sea-ice melt. Below that is a layer of cold water from the Pacific, and below that is a warm, salty Atlantic layer. The deepest layer is slowly replaced by mixing with overlying Atlantic water.

Measuring the different amounts of carbon in each layer (and determining its source) is an essential step in understanding the flow of carbon through the marine ecosystem, says Griffith: “It’s kind of like understanding how freight and people move in a city. If you don’t know what’s coming in and out, it’s really hard to understand how the city works.”

To analyze the contents of his samples, Griffith turned to Ann McNichol, a WHOI senior researcher and staff chemist. At WHOI’s National Ocean Sciences Accelerator Mass Spectrometer Facility (NOSAMS), she tallied the total number of carbon atoms in each specimen, including carbon-13, a stable isotope of the element. McNichol says that it can be used to determine where a particular pool of carbon originated, and how it may have been utilized by the marine ecosystem.

“Carbon-13 is primarily a source indicator,” she says. “By measuring levels of carbon-13 at different depths, it’s possible to determine if the carbon there was generated by the marine environment, ocean ice environment, or by terrestrial sources.” The team also examined levels of carbon-14, a radioactive isotope that can help determine the age of each sample to further determine its source.

In addition to understanding the basic carbon cycle in the Arctic Ocean, Griffith’s team hopes that the results of this baseline study will help evaluate how Arctic Ocean carbon levels and global climate interact. Griffith says there are several ways this could happen.

As the Arctic gradually warms, it may cause a more intense precipitation cycle over northern Canada, Alaska, and Siberia, generating more rainfall each year. This in turn would cause more runoff from melting permafrost and eroded soil—both rich sources of organic carbon.

One possible outcome of that scenario could be an increase of carbon dioxide in the region. As bacteria in Arctic Ocean use the new influx of carbon as a food source, they may create CO2 as a byproduct. A second possibility, Griffith posits, is that warming temperatures and melting sea ice might boost the production of phytoplankton, tiny plant-like organisms that live near the ocean’s surface and thrive on carbon dioxide in the water. As those phytoplankton die (or are eaten by other organisms and released as waste), they would sink to the sea floor, causing the carbon in their bodies to be sequestered in thick sediments—effectively removing the increased carbon from the environment.

“Those are just a few aspects of what might happen. But for every one that we think about, there could be 10 others that drive the system in a different direction,” says Griffith. “We don't yet have the kind of data to say anything definitive about how the Arctic would be affected by warming climate—but what we do have is a very important baseline of data to help evaluate changes that will happen in the future. Without that, you‘re unfortunately just guessing at how things change over time.”

Also collaborating on the study were WHOI geochemist Li Xu, Fiona McLaughlin and Robie Macdonald of the Institute of Ocean Sciences, Fisheries and Oceans Canada, Kristina Brown of the University of British Columbia, and Timothy Eglinton of the Swiss Federal Institute of Technology.

This research was funded by the WHOI Arctic Research Initiative, Fisheries and Oceans Canada, the Canadian International Polar Year Office, and the U.S. National Science Foundation.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

WHOI Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>