Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting the cellular clock

19.01.2009
Synthetic genetic circuits enable researchers to uncover the mechanisms by which cells set their internal clocks

Many organisms live out their lives on schedules established by internal clock mechanisms, generated by the combined action of multiple regulatory networks that interlock like gears in a watch. The resulting circadian rhythms establish one’s internal perception of day and night, as well as numerous time-points in between.

In 2005, a team led by Hiroki Ueda of the RIKEN Center for Developmental Biology in Kobe made significant progress in identifying the core components of the complex circadian circuitry1. They found several regulatory elements that specifically mark genes for activation or inhibition in the morning, daytime or night, as well as numerous genes that mediate regulation via these elements.

“Our team identified a natural transcriptional circuit for mammalian circadian clocks,” explain Maki Ukai-Tadenuma and Takeya Kasukawa, members of Ueda’s team. “However, no one has yet confirmed the mechanism that generates practically continuous phases from these three, discrete basic phases.”

However, the investigators had ideas about how such patterns might emerge, and were able to sketch a rough map of how the various time-specific regulatory loops may interact in vivo to produce a stable day–night cycle. To test their hypotheses, they constructed a series of synthetic circadian circuits within live cells based on their models, and examined the extent to which their activity replicated natural biological cycles2.

In fact, these experimental scenarios provided strong support for their regulatory models. One of the synthetic circuits consisted of a bioluminescent indicator gene under the regulation of a morning-specific activator and a nighttime-specific repressor, and the resulting pattern of indicator activity was a cyclic oscillation that very closely matches the natural expression pattern of daytime-specific genes.

They were similarly able to replicate night-cycle activity with a daytime-specific activator and morning-specific repressor, and were even able to generate novel ‘late night’ or ‘dusk’ output peaks by further tinkering with the timing of activation and repression. Most importantly, their experimental findings were all consistent with the predictions of their previously developed theoretical models. “Both our simulation model and the derived design principles successfully recapitulated the natural transcriptional circuit in the circadian clocks,” say the researchers.

Although their modeling system has proven effective, the researchers have yet to fully reconstruct all the phases of the mammalian circadian cycle. “In our study, morning transcriptional regulation is still a ‘missing link’,” they point out. The team’s focus now is on successfully identifying the regulatory processes required to restore these final time-points to their reconstructed cellular clock.

Reference

1. Ueda, H.R., Hayashi, S., Chen, W., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M. & Hashimoto, S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nature Genetics 37, 187–192 (2005).

2. Ukai-Tadenuma, M., Kasukawa, T. & Ueda, H.R. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nature Cell Biology 10, 1154–1163 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Systems Biology

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/624/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>