Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers publish study on neuronal RNA targeting

08.09.2011
Data suggest that Fragile X-associated tremor/ataxia syndrome may be linked to dysregulated neuronal RNA transport

SUNY Downstate scientist Ilham Muslimov, MD, PhD, along with senior author Henri Tiedge, PhD, professor of physiology and pharmacology and of neurology, published a study suggesting that cellular dysregulation associated with certain neurodegenerative disorders may result from molecular competition in neuronal RNA transport pathways.

The paper appeared in the Journal of Cell Biology, titled, "Spatial Code Recognition in Neuronal RNA Targeting: Role of RNA-hnRNP A2 Interactions." The article was highlighted in an accompanying editorial, "RNA Targeting Gets Competitive."

Dr. Tiedge notes, "In contrast to DNA, in which information coding is one-dimensional (i.e. linear), RNA can encode information in three-dimensional architectural motifs. Dr. Muslimov has now identified RNA motifs that act as spatial codes in nerve cells, directing RNA to dendrites and synapses." A synapse is a junction that allows a neuron (nerve cell) to pass an electrical or chemical signal to another cell, and dendrites are the branched processes of neurons that act to conduct electrochemical stimulation to the neuronal cell body.

He adds, "Just like number 7 on a New York subway train is a code for the destination 'Times Square,' Dr. Muslimov's RNA motifs are codes for the dendrite and synapse destinations. They make sure RNAs are delivered to cellular sites where they are supposed to operate."

"Sometimes, an RNA may express an inappropriately high number of targeting motifs, with the result that the resources of the transport system become overwhelmed. It is as if too many passengers are trying to enter trains at the same time, exceeding system capacity. We have congestion, and transport is disrupted."

Dr. Tiedge explains that Dr. Muslimov's work indicates that in nerve cells, excessive competition for common transport resources may result in compromised dendritic delivery of RNA. "In the example Dr. Muslimov studied, the culprit is an RNA that contains the genetic information for the fragile X mental retardation protein. Once the number of motifs structures in this RNA exceeds a threshold (usually around 55), the RNA becomes excessively competitive and begins to commandeer, at the expense of other RNAs, common resources of the cellular transport system."

"Dr. Muslimov's data raise the possibility that the resulting neurodegenerative disease, the fragile X-associated tremor/ataxia syndrome, is precipitated by a neuronal transport problem," Dr. Tiedge concludes.

SUNY Downstate Medical Center, founded in 1860, was the first medical school in the United States to bring teaching out of the lecture hall and to the patient's bedside. A center of innovation and excellence in research and clinical service delivery, SUNY Downstate Medical Center comprises a College of Medicine, Colleges of Nursing and Health Related Professions, a School of Graduate Studies, a School of Public Health, University Hospital of Brooklyn, and an Advanced Biotechnology Park and Biotechnology Incubator.

SUNY Downstate ranks ninth nationally in the number of alumni who are on the faculty of American medical schools. More physicians practicing in New York City have graduated from SUNY Downstate than from any other medical school.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>