Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WFU researchers discover new hemoglobin function

06.11.2007
Research results featured in Nature Chemical Biology

A team of researchers from Wake Forest University, the National Institutes of Health and other institutions has discovered a previously undetected chemical process within the oxygen-carrying molecule hemoglobin that could have far-reaching implications for the treatment of cardiovascular diseases.

In a paper published online Nov. 4 in the journal Nature Chemical Biology, senior authors Daniel Kim-Shapiro, professor of physics at Wake Forest, and Mark Gladwin, chief of the Vascular Medicine Branch of the National Heart, Lung and Blood Institute of the NIH, describe how hemoglobin, through a catalytic reaction that does not change its own chemical properties, converts nitrite salt to the vasodilator nitric oxide. The paper further documents how the nitric oxide activity harnessed by hemoglobin escapes the red blood cell to regulate blood flow and how the process, surprisingly, relies on the oxidized, or rusted, form of hemoglobin, previously associated only with diseased states.

“We believe we have solved the paradox of how hemoglobin mediates the conversion of nitrite to nitric oxide in a way that it is not immediately destroyed in the red cell and so it can be effective biologically,” Kim-Shapiro says.

... more about:
»blood »hemoglobin »nitric »nitric oxide »nitrite »reaction

In the bloodstream, iron-rich hemoglobin consumes, on contact, any free nitric oxide released by the blood vessels, so the idea that hemoglobin participates in forming nitric oxide had seemed implausible until recently.

In 2003, Gladwin and collaborators at the NIH, Wake Forest and the University of Alabama discovered that nitrite salt, the same substance used to cure meat and previously thought to be biologically inert, serves in the cell as a storage pool for nitric oxide. Since then, nitrite has been the object of intense study by researchers worldwide in pursuit of new treatments for such conditions as sickle cell disease, myocardial infarction, pulmonary hypertension, stroke and atherosclerosis.

In the most recent study, the researchers conclude that the nitrite-hemoglobin reaction generates dinitrogen trioxide (N2O3), which takes one of several pathways from the red blood cell and later separates into nitric oxide (NO) and nitrogen dioxide (NO2).

The newly discovered chemistry in hemoglobin has eluded scientists for a century because the intermediate molecule, nitrite-methemoglobin, formed during the process cannot be observed by electron paramagnetic resonance spectroscopy, the most sophisticated analysis technique currently available. That has rendered the reaction “invisible” by direct observation, but indirect measurement of the process is possible.

“Using a variety of biophysical techniques and by careful examination of the rates of reactions and the products that are made when experimenting with hemoglobin and nitrite, we were able to discover this reaction mechanism,” Kim-Shapiro explains.

Eric Frazier | EurekAlert!
Further information:
http://www.wfu.edu
http://dx.doi.org

Further reports about: blood hemoglobin nitric nitric oxide nitrite reaction

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>