Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WFU researchers discover new hemoglobin function

Research results featured in Nature Chemical Biology

A team of researchers from Wake Forest University, the National Institutes of Health and other institutions has discovered a previously undetected chemical process within the oxygen-carrying molecule hemoglobin that could have far-reaching implications for the treatment of cardiovascular diseases.

In a paper published online Nov. 4 in the journal Nature Chemical Biology, senior authors Daniel Kim-Shapiro, professor of physics at Wake Forest, and Mark Gladwin, chief of the Vascular Medicine Branch of the National Heart, Lung and Blood Institute of the NIH, describe how hemoglobin, through a catalytic reaction that does not change its own chemical properties, converts nitrite salt to the vasodilator nitric oxide. The paper further documents how the nitric oxide activity harnessed by hemoglobin escapes the red blood cell to regulate blood flow and how the process, surprisingly, relies on the oxidized, or rusted, form of hemoglobin, previously associated only with diseased states.

“We believe we have solved the paradox of how hemoglobin mediates the conversion of nitrite to nitric oxide in a way that it is not immediately destroyed in the red cell and so it can be effective biologically,” Kim-Shapiro says.

... more about:
»blood »hemoglobin »nitric »nitric oxide »nitrite »reaction

In the bloodstream, iron-rich hemoglobin consumes, on contact, any free nitric oxide released by the blood vessels, so the idea that hemoglobin participates in forming nitric oxide had seemed implausible until recently.

In 2003, Gladwin and collaborators at the NIH, Wake Forest and the University of Alabama discovered that nitrite salt, the same substance used to cure meat and previously thought to be biologically inert, serves in the cell as a storage pool for nitric oxide. Since then, nitrite has been the object of intense study by researchers worldwide in pursuit of new treatments for such conditions as sickle cell disease, myocardial infarction, pulmonary hypertension, stroke and atherosclerosis.

In the most recent study, the researchers conclude that the nitrite-hemoglobin reaction generates dinitrogen trioxide (N2O3), which takes one of several pathways from the red blood cell and later separates into nitric oxide (NO) and nitrogen dioxide (NO2).

The newly discovered chemistry in hemoglobin has eluded scientists for a century because the intermediate molecule, nitrite-methemoglobin, formed during the process cannot be observed by electron paramagnetic resonance spectroscopy, the most sophisticated analysis technique currently available. That has rendered the reaction “invisible” by direct observation, but indirect measurement of the process is possible.

“Using a variety of biophysical techniques and by careful examination of the rates of reactions and the products that are made when experimenting with hemoglobin and nitrite, we were able to discover this reaction mechanism,” Kim-Shapiro explains.

Eric Frazier | EurekAlert!
Further information:

Further reports about: blood hemoglobin nitric nitric oxide nitrite reaction

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>