Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human clone not miracle cure

28.11.2001


Cloned human embryos: did genes kick in?
© SPL


Rewiring the egg: mechanism remains murky.

From a scientific viewpoint, the cloning of human embryos may be more of a step than a leap, say sceptics. If the signals that turn adult cells into embryonic ones can be found, the creation of cloned embryos for tissue repair may become redundant.

Researchers at Advanced Cell Technology (ACT) in Worcester, Massachusetts, now report that they have created cloned human embryos. They aimed to make blastocysts, hollow balls of cells from which embryonic stem cells can be isolated and used to grow immunologically matched tissues to replace diseased ones.



Other researchers question whether ACT’s short-lived embryos, which did not become blastocysts, are a success. "A critical stage of development is the kicking in of genes," explains Harry Griffin of the Roslin Institute in Edinburgh, which cloned Dolly the sheep. "They didn’t get over this threshold."

The ACT team transferred nuclei from adult skin and ovarian cells into human eggs that had been stripped of their own chromosomes. Of 19 eggs, 11 appeared to undergo early stages of embryo development by forming a ’pronucleus’, a structure which forms in eggs fertilised with sperm. Two went on to divide into 4 cells and one into 6 cells1.

Embryonic genes in the nucleus only get switched on at, or after, this stage, explains embryologist Richard Gardner of the University of Oxford, UK. Before this, embryos are instructed by molecules in the mother’s egg cell. It is unclear whether ACT’s early embryos would progress any further, says Gardner.

Damage to genes incurred during manipulation of the nucleus can halt further development, explains John Gurdon, who studies embryos at the University of Cambridge, UK. The success rate for all cloning attempts so far "is very low indeed", says Gurdon.

Many researchers are trying to uncover the underlying mechanism by which adult nuclei, which have stopped dividing, are ’reprogrammed’ - made to switch off adult genes and switch on embryonic ones. With most work being done in mice, sheep and cows, "There’s almost nothing known in humans", says Gurdon.

If such signals can be identified, they might be used directly on adult human cells, points out Griffin, to turn them into the tissue of choice. "Maybe we can miss out the first stage and reprogramme directly," he says.

This would alleviate the need for human eggs in the cloning procedure altogether. It would also avoid the risks of genetic defects in cloned tissues, which have been reported in some cloned animals.

ACT are already working on alternatives to human cloning. In the same paper they describe a technique in which they stimulated human eggs - before the stage at which they halve their number of chromosomes - to divide and form embryos without fertilization by sperm. Using a chemical that triggers ions to enter the cell, they activated 22 eggs, of which 6 went some way towards forming blastocysts.

References

  1. Cibelli, J.B. et al. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. The Journal of Regenerative Medicine, 2, 25 - 31, (2001).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011129/011129-9.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>