Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human clone not miracle cure

28.11.2001


Cloned human embryos: did genes kick in?
© SPL


Rewiring the egg: mechanism remains murky.

From a scientific viewpoint, the cloning of human embryos may be more of a step than a leap, say sceptics. If the signals that turn adult cells into embryonic ones can be found, the creation of cloned embryos for tissue repair may become redundant.

Researchers at Advanced Cell Technology (ACT) in Worcester, Massachusetts, now report that they have created cloned human embryos. They aimed to make blastocysts, hollow balls of cells from which embryonic stem cells can be isolated and used to grow immunologically matched tissues to replace diseased ones.



Other researchers question whether ACT’s short-lived embryos, which did not become blastocysts, are a success. "A critical stage of development is the kicking in of genes," explains Harry Griffin of the Roslin Institute in Edinburgh, which cloned Dolly the sheep. "They didn’t get over this threshold."

The ACT team transferred nuclei from adult skin and ovarian cells into human eggs that had been stripped of their own chromosomes. Of 19 eggs, 11 appeared to undergo early stages of embryo development by forming a ’pronucleus’, a structure which forms in eggs fertilised with sperm. Two went on to divide into 4 cells and one into 6 cells1.

Embryonic genes in the nucleus only get switched on at, or after, this stage, explains embryologist Richard Gardner of the University of Oxford, UK. Before this, embryos are instructed by molecules in the mother’s egg cell. It is unclear whether ACT’s early embryos would progress any further, says Gardner.

Damage to genes incurred during manipulation of the nucleus can halt further development, explains John Gurdon, who studies embryos at the University of Cambridge, UK. The success rate for all cloning attempts so far "is very low indeed", says Gurdon.

Many researchers are trying to uncover the underlying mechanism by which adult nuclei, which have stopped dividing, are ’reprogrammed’ - made to switch off adult genes and switch on embryonic ones. With most work being done in mice, sheep and cows, "There’s almost nothing known in humans", says Gurdon.

If such signals can be identified, they might be used directly on adult human cells, points out Griffin, to turn them into the tissue of choice. "Maybe we can miss out the first stage and reprogramme directly," he says.

This would alleviate the need for human eggs in the cloning procedure altogether. It would also avoid the risks of genetic defects in cloned tissues, which have been reported in some cloned animals.

ACT are already working on alternatives to human cloning. In the same paper they describe a technique in which they stimulated human eggs - before the stage at which they halve their number of chromosomes - to divide and form embryos without fertilization by sperm. Using a chemical that triggers ions to enter the cell, they activated 22 eggs, of which 6 went some way towards forming blastocysts.

References

  1. Cibelli, J.B. et al. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. The Journal of Regenerative Medicine, 2, 25 - 31, (2001).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/011129/011129-9.html

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>