Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drop in found out

07.11.2001


Long drop: soap and air keep water afloat on water.
© Y. Amarouchene


Air lets water droplets skim across the kitchen sink.

Scientists have found the answer to a question pondered over many a kitchen sink: why do little droplets skim across the surface of washing-up water rather than mix with it?

Yacine Amarouchene and colleagues at the University of Bordeaux in Talence, France have discovered that the height from which the drops fall has no effect on their lifespan1.



Soap, detergent - and indeed food grease - are ’surfactants’. They form a kind of skin on the surface of water that stabilizes a droplet, preventing it from merging where it rests. Droplets of pure water coalesce in a few thousandths of a second; when they contain a little surfactant they last hundreds of times longer.

The interest in coalescing droplets goes beyond the kitchen sink. When applying thin coats of a liquid as a spray, for example in car-painting, droplets need to merge quickly and smoothly at the surface of the wet film. Emulsions and foams, meanwhile, are sustained by inhibiting or slowing the coalescence of droplets or bubbles. Amarouchene’s group hope their theory might help chemical engineers and technologists to promote or prevent the effect, as required.

Droplets containing soap or detergent that fall a short distance onto a water surface bounce as if on a trampoline, the researchers found. The droplets then rest in a slight dip with a very thin film of air separating the two water surfaces.

How long the droplet lasts depends on how quickly the air is squeezed out from this interface, which in turn depends on the concentration of surfactants at the droplet surface. For pure water, the air film can thin very fast. A skin of surfactants at the water surface makes it harder for air to flow past. Air flow deforms this skin; and deformed skin slows the flow further.

The researchers find that, for a droplet of a particular size and containing a particular amount of surfactant, there is a characteristic residence time on the surface. Dropping them from increasing heights simply increases the chance of rupture on impact - it doesn’t alter the average lifetime of the drops that survive.

References
  1. Amarouchene, Y., Cristobal, G. & Kellay, H. Noncoalescing drops. Physical Review Letters, 87, 206104 (2001).


PHILIP BALL | © Nature News Service

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>