Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast, accurate detection of explosives on airport luggage possible

04.10.2005


Fast, highly reliable detection of residues that could indicate the presence of explosives and other hazardous materials inside luggage is now possible with technology under development at Purdue University.



A research team led by R. Graham Cooks has found a way to determine the presence on a surface of trace quantities of chemicals – such as those found in biological and chemical warfare agents, as well as several common explosives – within a few seconds. The researchers’ method uses a tool common in many chemistry and biology labs called a mass spectrometer that has been modified to analyze samples directly from the environment rather than requiring the lengthy pre-treatment that laboratory mass spectrometry samples typically require.

According to Cooks, no portable device is currently on the market that can analyze samples in this manner. The team had previously developed a prototype device that detects nanogram-sized samples, but with recent improvements the device has proven successful at detecting at the picogram (trillionths of a gram) level in lab tests, about 1,000 times less material than previously required.


Cooks said he thinks a portable tool based on the technology could prove valuable for security in public places worldwide.

"In the amount of time it requires to take a breath, this technology can sniff the surface of a piece of luggage and determine whether a hazardous substance is likely to be inside, based on residual chemicals brushed from the hand of someone loading the suitcase," said Cooks, who is the Henry Bohn Hass Distinguished Professor of Analytical Chemistry in Purdue’s College of Science. "We think it could be useful in screening suspect packages in airports, train stations and other places where there have been problems in the past. Because the technology works on other surfaces, such as skin and clothing, as well, it also could help determine whether an individual has been involved in the handling of these chemicals."

J.L. Beauchamp, a chemist at the California Institute of Technology who has worked in mass spectrometry for more than four decades, said the team’s research on desorption electrospray ionization, or DESI, can solve a number of problems.

"The nature of explosive materials has made them difficult to detect with mass spectrometry," said Beauchamp, who is also a member of the National Academy of Sciences. "Cooks’ group has solved this problem with DESI, and combined with recent developments in the field has developed what may be a practical and widely deployable method for detecting and positively identifying not only explosives, but also a wide range of substances that might be employed by terrorist groups."

The research announcement appeared this week as an accelerated article in the journal Analytical Chemistry’s Web site. Cooks developed the method with the assistance of his Purdue colleagues Ismael Cotte-Rodríguez, Zoltán Takáts, Nari Talaty and Huanwen Chen.

Mass spectrometers are the workhorses of many chemistry labs because these machines can deliver highly accurate and reliable analyses of substances interesting to scientists, including pharmaceutical developers. The devices also are often used by law enforcement to test suspicious looking residues that could indicate the presence of explosives or drugs inside packages. But most mass spectrometers are unwieldy, cabinet-sized machines that require samples to undergo hours of intensive preparation before testing, which can be a problem if officials need to test a large number of containers quickly.

"A mass spectrometer is one of the best tools we’ve got, but scientists have known for years that without a way to streamline the analytical process, mass spectrometry will have limited use in the field," said Talaty, a graduate student in Cooks’ lab. "But with the present technology, we can now analyze samples rapidly, without any pretreatment. It has already been used to analyze pharmaceuticals at up to three samples per second."

Cooks’ team has made several strides in improving mass spectrometry over the past few years, having found ways to both decrease the size of the spectrometers and analyze samples rapidly under standard environmental conditions. Their most recent work with DESI, which involves directing a spray of reactive chemicals onto a surface to dislodge suspicious chemicals and sucking the mixture into a spectrometer for analysis, has allowed them to detect hazardous substances at unprecedentedly low quantities and with equally unprecedented speed.

"Trace and residue analysis of explosives has been a difficult task due to deliberate concealment, the small quantities of material available and the presence of other compounds that can interfere with the analysis," said Cotte-Rodríguez, also a graduate student in Cooks’ lab. "But the ’spray’ technique we use, combined with small tandem mass spectrometers that can confirm the identity of a particular explosive, gives this method both unusual sensitivity and quick turnaround time, even compared with what we achieved earlier this year."

Talaty said the team’s forthcoming spectrometry gear, which will weigh less than 25 pounds, fits into a backpack and returns a negligible number of false readings, both factors that are also important to law enforcement officials. The small instrument is currently being fitted to work with the DESI ionization method described in the team’s paper.

"You don’t want to lug around gear that you can’t carry on your person, and once you get it to a site, you want it to give you the straight story on what you’re looking at and be able to confirm it," he said. "This technology can do both."

Although DESI sensors still have difficulty classifying compounds with many different components, he said, this limitation would not likely be much of an issue in bomb detection because explosives do not generally contain that many.

"If you tried to detect a particular compound out of a mixture of thousands of different substances, you might begin to see the limitations of this method," Talaty said. "But real-world explosives are not that complex. In any case, the sensitivity of DESI is high enough that officials could find what they need to if it’s there. No system is flawless, but if we deployed this technology to transportation centers throughout the world, it would make it far more difficult for terrorists to get away with planting bombs where people congregate."

Cooks’ team is associated with several research centers at or affiliated with Purdue, including the Bindley Bioscience Center, the Indiana Instrumentation Institute, Inproteo (formerly the Indiana Proteomics Consortium) and the Center for Sensing Science and Technology.

This research was sponsored in part by Inproteo, Prosolia and the Office of Naval Research.

Purdue Research Foundation has filed for patent protection on this research.

Writer: , (765) 494-2081, cboutin@purdue.edu

Sources: R. Graham Cooks, (765) 494-5263, cooks@purdue.edu

Nari Talaty, (765) 494-9420, ntalaty@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>