Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solexa Completes First Full Genome Sequence with Cluster-SBS Technology

10.03.2005


Results Provide End-to-End Experimental Demonstration of Future DNA Sequencing Technology, Lay Groundwork for Human Re-sequencing



Solexa today announced the completion of its first genome sequence, that of the virus Phi-X 174. The company announced genome coverage of 100%, accuracy of at least 99.93% and the detection of at least three mutations subsequently confirmed by conventional DNA sequencing techniques. This accuracy was achieved despite a number of sub-sequences, which are particularly difficult to sequence with certain other chemistries.

The work reported by Solexa today was completed using its breakthrough/completely novel sequencing biochemistry. This work provides end-to-end demonstration of a technology expected to sequence the DNA of individual humans for the detection of key disease-predisposing mutations. The genome sequence has already been repeated a number of times.


Over 1,000-times improvement in data generated per sample preparation

While the Phi-X 174 genome sequenced was small at just over 5,000 bases, the amount of sequence data generated was considerably larger. Whereas conventional DNA sequencing equipment typically delivers no more than approximately 1,200 bases per sample preparation, this Solexa experiment delivered more than three million bases from a single sample preparation. Thus sample preparation, which can be a major effort in large-scale DNA sequencing projects, can potentially be reduced by over 1,000-fold.

While impressive, these results significantly underestimate the amount of data available. In these experiments, because of the prototype nature of the hardware used, the instrument system was directed to image only 3% of the available area in its flow-cell. Thus the company estimates that more than 100 million bases of data were represented in a single flow cell, all from a single sample preparation. Solexa expects future experiments to substantially increase the fraction of data to be recovered. Ultimately later this year fully automated instrumentation is expected to allow hands-off capture of almost all available data.

Cluster technology, acquired in 2004, achieves record small feature sizes

The experiments being reported today all were conducted using DNA cluster technology, which was acquired by the company in early 2004 and has been significantly refined and developed since that time. Notably, the results were implemented with proprietary surface chemistry developed by the company. This approach has successfully achieved clusters so small that they are beyond the resolving power of the research microscope used to observe them. This achievement confirms Solexa’s decision to move from earlier bead based work to clusters. The new approach provides high fluorescence signals while achieving submicron feature sizes, thereby enabling rapid and inexpensive detection of large numbers of DNA sequencing data points. Since instrument depreciation is a major contributor to the cost per data point, this is an important advancement. By lowering instrument costs per data point while simultaneously achieving extremely low reagent usage, the company anticipates that cluster technology may result in substantially lower sequencing costs.

While companies with competing technologies have developed novel DNA sequencing technologies based on beads spaced by as much as 50 microns apart, Solexa is now working with clusters as small as one-half a micron in radius. This density of sequence reads is up to 500 times higher than the bead-based approach. Thus reagent costs can be expected to scale in parallel, likely giving Solexa a substantial long-term cost advantage.

Sequencing By Synthesis (SBS) provides read lengths needed for future human re-sequencing

Since Solexa was founded, it has labored to increase the read length of the sequences it is able to determine. Bioinformatics analysis of the human genome reference sequence has shown that read lengths of 25 base pairs are the point of diminishing returns for increasing read-lengths in genome-scale re-sequencing work. At this level, up to 82% of the human genome can be uniquely associated with specific reads, even when those reads record mutations. Above this level, the percentage of the genome covered increases very slowly with increasing read length, due to the content of highly repetitive sequences (i.e., those of least importance to most researchers). Solexa has now achieved this read length in the Phi-X experiment and has obtained greater than a hundred thousand reads of this length on a wide range of sequence contexts. The sequencing technology is not fundamentally limited to this read length.

The sequence covered by Solexa in this demonstration of the “Cluster-SBS” technology includes a numbers of cases in which the same nucleotide occurs for many consecutive positions, a type of subsequence that can be problematic for other sequencing chemistries. The Solexa SBS chemistry reads through these by analysis of each incremental base in a stepwise fashion. This focus on accuracy is expected to be a key competitive advantage for the company. Re-sequencing is often used to look for very rare mutations, particularly in cancer samples. In these and other cases, even a modest error rate can create more false positives than real detected mutations.

The Pioneering Role of Phi-X 174

In making this announcement, the company noted that the Phi-X 174 virus was again playing a pioneering role. The first complete sequence of a genome was ØX174 in 1978 by Fred Sanger and co-workers (J. Mol. Biol., 125, 225-246, 1978). He shared the Nobel Prize for Chemistry in 1980 for "...contributions concerning the determination of base sequences in nucleic acids". More recently, the first complete synthesis of a genome was described with ØX174 by Craig Venter et al in 2003 (Proc. Natl. Acad. Sci. USA., 100, 15440-15445, 2003).

Rowan Minnion | alfa
Further information:
http://www.solexa.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>