Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin scientists find portal to show animals evolve

03.02.2005


Like butterflies, different species of fruit flies decorate their wings with a great diversity of spots and patterns. Digging deep into a single gene that produce pigmentation in the flies, a group led by UW-Madison biologist Sean Carroll has found the molecular switches that control where the pigmentation is deployed. The finding explains how common genes can be controlled to produce the seemingly endless array of patterns, decoration and body architecture found in animals. Photo: courtesy of Nicolas Gompel and Benjamin Prud’homme


Like the gaudy peacock or majestic buck, the bachelor fruit fly is in a race against time to mate and pass along its genes. And just as flashy plumage or imposing antlers work to an animal’s reproductive advantage, so, too, do the colored spots that decorate the wings of a particular male fruit fly.

To the ladies, the spots - waved frenetically by suitors in the fruit fly courtship ritual - connote sex appeal.

To a team of Wisconsin scientists, however, the origin of these decorative spots has proven to be a critical portal to unraveling a long-standing genetic mystery: What is it, exactly, that governs the development and evolution of form? Is it the genes themselves or the devices within DNA that control where genes are used in the making of the animal’s body?



The answer, according to the team from the Howard Hughes Medical Research Institute (HHMI) at the University of Wisconsin-Madison, and published this week (Feb. 2) in the journal Nature, is that the heavy lifting of evolution is accomplished through changes in the genetic switches that direct how genes work. "This is smoking gun evidence of how animal patterns evolve," says Sean B. Carroll, a UW-Madison professor of genetics and the senior author of the Nature paper.

While discovered in flies, it is almost certain that the same mechanisms are at play in all other animals, including humans, and help determine everything from the snout of an aardvark to the stripes of the zebra.

The discovery is important because it provides critical evidence of how animals evolve new features to improve their chances of reproductive success and survival. It is, says Carroll, convincing proof that evolution occurs as accidental mutations create features - a spot here or a stripe there - that confer advantages in attracting mates, hiding from or confusing predators, or gaining access to food. The mutations are preserved, according to the Nature report, as changes in a few of the millions of nucleotides - the chemical building blocks of DNA.

The fruit fly, says Carroll, proved to be ideal to study the fine print of evolution because one species, Drosophila melanogaster, is among the most-studied animals in biology and is a workhorse of modern genetics. But there are thousands of species of fruit fly, and unlike the very plain melanogaster, the wings of males of many species sport decorations that are as diverse and as beautiful as the wings of butterflies.

The data from the Wisconsin study, Carroll and his colleagues say, confirm the long-held idea that "evolution is a combination of chance and ecological necessity, which selects those things that are going to be kept. It means that (an animal’s features) are just accidents - accidents that are preserved" because they confer some kind of advantage.

While the decorations on a fruit fly’s wing begin as accidents of development, the patterns we see are far from willy-nilly murals of nature. The spots tend to occur along physical landmarks of the wing, at the junctures of veins, which provide contours and boundaries like those of a leaded-glass window. "The patterns on a wing are not just random graffiti. The spots emerge at specific places," Carroll says.

"The structure of the fruit fly wing has been around for a long time, and the (different species) paint by parameters that are already there," says Nicolas Gompel, who, along with Benjamin Prud’homme, is a lead author of the new Nature report. "What we see in many different species is the repeated use of a pattern that is already built into the wing," Gompel says.

The new work by the Wisconsin HHMI team adds to the accumulating understanding of how evolution works at the most fundamental level, says Carroll. "The depth of our understanding of evolution is only growing," he says.

In addition to Carroll, Gompel and Prud’homme, authors of the Nature paper include Patricia J. Wittkopp, now of Cornell University, and Victoria A. Kassner.

Sean B. Carroll | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>