Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marsh-dwelling mole gives new meaning to the term ’fast food’

03.02.2005


The star-nosed mole gives a whole new meaning to the term "fast food."


An adult star-nosed mole. Credit: Kenneth Catania



A study published this week in the journal Nature reveals that this mysterious mole has moves that can put the best magician to shame: The energetic burrower can detect small prey animals and gulp them down with a speed that is literally too fast for the human eye to follow.

It takes a car driver about 650 milliseconds to hit the brake after seeing the traffic light ahead turn red. The star-nosed mole, operating in the Stygian darkness of its burrow, can detect the presence of a tasty tidbit, such as an insect larva or tiny worm, determine that it is edible and gulp it down in half that time.


"Most predators take times ranging from minutes to seconds to handle their prey," says Kenneth C. Catania, assistant professor of biological sciences at Vanderbilt, who conducted the study. "The only things I’ve found that come even close are some species of fish," he says.

The secret to the star-nosed mole’s impressive foraging ability is the star-shaped set of appendages that ring its nose. This fleshy star makes the mole one of the oddest looking members of the mammal kingdom. Despite its distinctive appearance--and the fact that it ranges from Canada, down through the Eastern United States as far as Georgia--people rarely see star-nosed moles because they live only in marshes and wetlands.

Catania, working with laboratory assistant Fiona E. Remple, captured the elusive moles’ feeding behavior with a high-speed video camera. Because they live in darkness, the moles have very poor eyesight. So they continually survey their environment by repeatedly touching the objects around them with their star appendages. Timing the moles’ actions, the researchers found that after touching a small piece of food they took an average of 230 milliseconds to identify it as edible and eat it.

The researchers discovered that their subject is not just a super-fast forager, but that it is moving about as fast as its brain and nervous system will allow. They calculate that when a mole touches a new object, its brain has about eight milliseconds to determine whether it is edible. Given the split millisecond timing involved, it is not surprising that the moles frequently make mistakes. In a series of trials where the researchers set out worm sushi, they found that the moles started to move in the wrong direction and had to suddenly reverse themselves one out of three times.

This inefficient behavior suggests that the moles are operating at, or near, the limit set by the speed which the mole’s nervous system can process touch information, the researchers conclude. "If additional research confirms that this is the case, then these little animals can inform us about an important limitation to the brain’s ability to process information and make decisions," Catania says.

The ability to handle prey so quickly and efficiently appears to provide the star-nosed mole with a real advantage: It should be able to live on a diet of smaller animals than its slower competitors, such as shrews and other kinds of moles found in the same area.

It’s more difficult to subsist on a diet of small animals than it is to live on larger prey. For example, it is more efficient to kill a 1,000-pound beef cow for food than 125 eight-pound rabbits. That is because it takes substantially more time and energy to kill and consume the rabbits. Ecologists have formalized this relationship with a factor called prey profitability. By reducing its handling time to a fraction of a second, the star-nosed mole may be able to achieve a net energy "profit" with a diet of insect larvae and other food sources. Of course, that doesn’t mean it turns up its nose at larger prey, like long, luscious earthworms.

The insight that the star-nosed mole has specialized in minimizing handling time for small prey helps clear up a number of the mysteries that have surrounded this unusual mammal, Catania says.

For example, it helps explain why the mole developed its star nose. The 22 appendages that ring its nose have a much larger surface area than the sensitive area of an ordinary mole nose. The flexible fingers also allow the star-nose to tap objects in its environment at a faster rate. These advantages mean that the star-nosed mole can find 14 times as many small prey animals in a given period of search time than its close cousin, the eastern mole, the researchers calculate.

Of course, the greater the concentration of small prey, the more this advantage pays off. Not surprisingly, such small-prey animals tend to be abundant in the wetlands and marshes that the star-nose inhabits, Catania says.

Specialization for small-prey handling can also explain the mole’s unusual teeth. "The star-nose has the strangest teeth," Catania says. Its incisors are very small compared to other moles and are formed like tweezers. "This allows them to grasp small prey very precisely," he says.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>