Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marsh-dwelling mole gives new meaning to the term ’fast food’

03.02.2005


The star-nosed mole gives a whole new meaning to the term "fast food."


An adult star-nosed mole. Credit: Kenneth Catania



A study published this week in the journal Nature reveals that this mysterious mole has moves that can put the best magician to shame: The energetic burrower can detect small prey animals and gulp them down with a speed that is literally too fast for the human eye to follow.

It takes a car driver about 650 milliseconds to hit the brake after seeing the traffic light ahead turn red. The star-nosed mole, operating in the Stygian darkness of its burrow, can detect the presence of a tasty tidbit, such as an insect larva or tiny worm, determine that it is edible and gulp it down in half that time.


"Most predators take times ranging from minutes to seconds to handle their prey," says Kenneth C. Catania, assistant professor of biological sciences at Vanderbilt, who conducted the study. "The only things I’ve found that come even close are some species of fish," he says.

The secret to the star-nosed mole’s impressive foraging ability is the star-shaped set of appendages that ring its nose. This fleshy star makes the mole one of the oddest looking members of the mammal kingdom. Despite its distinctive appearance--and the fact that it ranges from Canada, down through the Eastern United States as far as Georgia--people rarely see star-nosed moles because they live only in marshes and wetlands.

Catania, working with laboratory assistant Fiona E. Remple, captured the elusive moles’ feeding behavior with a high-speed video camera. Because they live in darkness, the moles have very poor eyesight. So they continually survey their environment by repeatedly touching the objects around them with their star appendages. Timing the moles’ actions, the researchers found that after touching a small piece of food they took an average of 230 milliseconds to identify it as edible and eat it.

The researchers discovered that their subject is not just a super-fast forager, but that it is moving about as fast as its brain and nervous system will allow. They calculate that when a mole touches a new object, its brain has about eight milliseconds to determine whether it is edible. Given the split millisecond timing involved, it is not surprising that the moles frequently make mistakes. In a series of trials where the researchers set out worm sushi, they found that the moles started to move in the wrong direction and had to suddenly reverse themselves one out of three times.

This inefficient behavior suggests that the moles are operating at, or near, the limit set by the speed which the mole’s nervous system can process touch information, the researchers conclude. "If additional research confirms that this is the case, then these little animals can inform us about an important limitation to the brain’s ability to process information and make decisions," Catania says.

The ability to handle prey so quickly and efficiently appears to provide the star-nosed mole with a real advantage: It should be able to live on a diet of smaller animals than its slower competitors, such as shrews and other kinds of moles found in the same area.

It’s more difficult to subsist on a diet of small animals than it is to live on larger prey. For example, it is more efficient to kill a 1,000-pound beef cow for food than 125 eight-pound rabbits. That is because it takes substantially more time and energy to kill and consume the rabbits. Ecologists have formalized this relationship with a factor called prey profitability. By reducing its handling time to a fraction of a second, the star-nosed mole may be able to achieve a net energy "profit" with a diet of insect larvae and other food sources. Of course, that doesn’t mean it turns up its nose at larger prey, like long, luscious earthworms.

The insight that the star-nosed mole has specialized in minimizing handling time for small prey helps clear up a number of the mysteries that have surrounded this unusual mammal, Catania says.

For example, it helps explain why the mole developed its star nose. The 22 appendages that ring its nose have a much larger surface area than the sensitive area of an ordinary mole nose. The flexible fingers also allow the star-nose to tap objects in its environment at a faster rate. These advantages mean that the star-nosed mole can find 14 times as many small prey animals in a given period of search time than its close cousin, the eastern mole, the researchers calculate.

Of course, the greater the concentration of small prey, the more this advantage pays off. Not surprisingly, such small-prey animals tend to be abundant in the wetlands and marshes that the star-nose inhabits, Catania says.

Specialization for small-prey handling can also explain the mole’s unusual teeth. "The star-nose has the strangest teeth," Catania says. Its incisors are very small compared to other moles and are formed like tweezers. "This allows them to grasp small prey very precisely," he says.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>