Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New component of the ’brakes’ on nerve regeneration found

03.02.2005


Among the principal obstacles to regenerating spinal cord and brain cells after injury is the "braking" machinery in neurons that prevents regeneration. While peripheral nerves have no such machinery and can readily regenerate, central nervous system (CNS) neurons have their brakes firmly in place and locked.



Now, two groups of scientists have independently found a new component of that braking machinery, adding to understanding of the regulation of neuronal regeneration and of possible treatments to switch off the brakes on regrowth of spinal cord or brain tissue.

The two groups--one group led by Jong Bae Park, Glenn Yiu, and colleagues from Children’s Hospital Boston and the other led by Sha Mi and colleagues of Biogen Idec, Inc.--discovered that a protein variously called TAJ or TROY acts as an important part of the receptor on neurons that responds to growth-inhibitory molecules in myelin. Specifically, these molecules prevent the growth of the cablelike axons of injured neurons. Myelin is the fatty sheath that encases neurons and acts as an insulator and aid to the transmission of nerve impulses.


Researchers knew that CNS neurons had receptors on their surface that accepted the inhibitory molecules--like a key fitting a lock--and switched-on inhibitory signaling within the neuron. They had also shown that a protein called p75 could function as a component of the complex of proteins that make up this receptor. The puzzle, however, was that p75 is not widely made in the adult neurons in which this inhibitory receptor complex is known to function.

The two research groups turned their attention to TAJ/TROY because it is a member of the same family of receptor proteins--called TNF receptors--as p75. Their experiments revealed that TAJ/TROY is produced throughout the adult brains of mice. Also, they found that TAJ/TROY readily fits into the inhibitory receptor complex and that the resulting receptor complex switches-on the inhibitory machinery within neurons. Also, they found that treating neurons with a nonfunctional version of TAJ/TROY abolished neurons’ response to the "braking" molecules produced by myelin and encouraged neuron growth.

"Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axon regeneration," wrote Mi and colleagues.

Wrote Park and colleagues, "The implication that more than one TNF receptor member may be involved in myelin inhibition adds a new level of complexity to designing therapeutic strategies for treating CNS injury." They cited studies showing that TNF receptors are expressed in many types of cells in the CNS and are intimately involved in inflammatory responses that also play a role--perhaps harmful, perhaps beneficial to regeneration or recovery--in regulating response to injury. "Further characterization of the underlying mechanisms of these findings and their relation to myelin inhibition may provide important insights into designing therapeutic strategies to block myelin inhibition and cell death in the context of CNS injury," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>