Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach studying protein structure could advance drug development

09.12.2004


Developed by biologists at Argonne National Lab



Structural changes in proteins can now be seen in increased detail, using a new application of an existing technique. The application, developed at the U.S. Department of Energy’s Argonne National Laboratory, could help produce lead drugs for disease therapy.

In research published in Chemistry and Biology, the scientists report the use of wide angle X-ray scattering (WAXS), an X-ray diffraction technique that has previously been used to determine the crystalline structures of polymers. The biologists adapted this materials science technique to study ligand-induced structural changes in proteins. Ligands are molecules that can cause the creation of complex compounds in protein structure. The results Argonne scientists achieved using WAXS are comparable to the already accepted predictions of protein structures provided by X-ray crystallography, and are easier and quicker to obtain. The results also show promise for using WAXS as a reliable and high-speed tool for lead drug identification.


WAXS has the potential to identify medicinal drugs that can bind to target proteins and to determine how effective drugs are at binding to and modifying their targeted proteins. The technique is sensitive enough to tell the difference between a ligand that’s just sticking to the surface of a protein (a drug that may have no effect) and a ligand that’s actually changing the structure (a drug that is more likely to be effective). In the past, detecting this difference required the use of several techniques combined. No other previous technique has been able to distinguish the difference on its own, or as quickly.

"Wide angle X-ray scattering provides a real tool for identifying lead drugs," said co-author Lee Makowski of Argonne’s Biosciences Division, "It will identify a molecule that’s good enough to be developed as a drug."

The researchers believe WAXS will allow scientists to study more protein-ligand interactions at a faster and cheaper rate than the existing laborious and expensive X-ray crystallography. "The data collection only takes a couple of minutes," said Makowski, "So theoretically an industrial pipeline could be set up that would only be limited by a few minutes per protein-small molecule interaction." Functional cell-based assays (which are needed for other methods) currently take weeks, if not months to complete--causing a bottleneck in data collection and analysis.

Furthermore, high quality crystal structures are tough to attain, and only a limited number of proteins have documented crystal structures of the protein with and without a ligand present. "There is no other technique like this out there," said co-author Diane Rodi from Argonne’s Biosciences Division, "You can see more detailed changes that take place in protein-ligand interactions in solution than you can with any other technique. And more protein-ligand interactions can be tested."

No previous available technique is able to show the magnitude of protein structure change in the absence of a crystal structure. Small angle X-ray scattering (SAXS) is able to show the size and shape of the protein, but does not show details about the change. Circular dichroism spectroscopy (a method that provides structural information on many types of biological macromolecules) doesn’t show the level of detailed changes WAXS provides.

WAXS does not require any crystallization, but uses the same X-ray scattering procedure as crystallography. The technique involves placing the protein and ligand in a water-based solution and then placing this solution in the path of an X-ray beam. The resulting X-ray scattering pattern reveals information about the detailed structure of the protein-ligand complex, which can then be contrasted with a scattering pattern of the protein alone.

The researchers at Argonne tested four proteins plus and minus their corresponding ligands using WAXS, which uses the intense X-ray beams at the BioCAT facility in the Advanced Photon Source. The proteins were chosen based upon the best structures available from the Protein Data Bank that had already been observed with and without ligands using X-ray crystallography.

"We chose proteins that already had crystal structures so that we could assess just how good the WAXS technique is," said lead-author Bob Fischetti, of both Argonne’s Advanced Photon Source and Biosciences Division, "And of course we wanted to convince people that what we were seeing is real."

The tested proteins displayed changes that directly corresponded to those documented from the crystal structures, proving the observations were real and validating the method as a potential drug discovery tool.

The other author on the report, in addition to Fischetti, Rodi and Makowski is David B. Gore (BioCAT, Advanced Photon Source, Argonne).

The researchers have submitted a grant proposal request to the National Institutes of Health for possible funding of future studies with WAXS.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>