Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach studying protein structure could advance drug development

09.12.2004


Developed by biologists at Argonne National Lab



Structural changes in proteins can now be seen in increased detail, using a new application of an existing technique. The application, developed at the U.S. Department of Energy’s Argonne National Laboratory, could help produce lead drugs for disease therapy.

In research published in Chemistry and Biology, the scientists report the use of wide angle X-ray scattering (WAXS), an X-ray diffraction technique that has previously been used to determine the crystalline structures of polymers. The biologists adapted this materials science technique to study ligand-induced structural changes in proteins. Ligands are molecules that can cause the creation of complex compounds in protein structure. The results Argonne scientists achieved using WAXS are comparable to the already accepted predictions of protein structures provided by X-ray crystallography, and are easier and quicker to obtain. The results also show promise for using WAXS as a reliable and high-speed tool for lead drug identification.


WAXS has the potential to identify medicinal drugs that can bind to target proteins and to determine how effective drugs are at binding to and modifying their targeted proteins. The technique is sensitive enough to tell the difference between a ligand that’s just sticking to the surface of a protein (a drug that may have no effect) and a ligand that’s actually changing the structure (a drug that is more likely to be effective). In the past, detecting this difference required the use of several techniques combined. No other previous technique has been able to distinguish the difference on its own, or as quickly.

"Wide angle X-ray scattering provides a real tool for identifying lead drugs," said co-author Lee Makowski of Argonne’s Biosciences Division, "It will identify a molecule that’s good enough to be developed as a drug."

The researchers believe WAXS will allow scientists to study more protein-ligand interactions at a faster and cheaper rate than the existing laborious and expensive X-ray crystallography. "The data collection only takes a couple of minutes," said Makowski, "So theoretically an industrial pipeline could be set up that would only be limited by a few minutes per protein-small molecule interaction." Functional cell-based assays (which are needed for other methods) currently take weeks, if not months to complete--causing a bottleneck in data collection and analysis.

Furthermore, high quality crystal structures are tough to attain, and only a limited number of proteins have documented crystal structures of the protein with and without a ligand present. "There is no other technique like this out there," said co-author Diane Rodi from Argonne’s Biosciences Division, "You can see more detailed changes that take place in protein-ligand interactions in solution than you can with any other technique. And more protein-ligand interactions can be tested."

No previous available technique is able to show the magnitude of protein structure change in the absence of a crystal structure. Small angle X-ray scattering (SAXS) is able to show the size and shape of the protein, but does not show details about the change. Circular dichroism spectroscopy (a method that provides structural information on many types of biological macromolecules) doesn’t show the level of detailed changes WAXS provides.

WAXS does not require any crystallization, but uses the same X-ray scattering procedure as crystallography. The technique involves placing the protein and ligand in a water-based solution and then placing this solution in the path of an X-ray beam. The resulting X-ray scattering pattern reveals information about the detailed structure of the protein-ligand complex, which can then be contrasted with a scattering pattern of the protein alone.

The researchers at Argonne tested four proteins plus and minus their corresponding ligands using WAXS, which uses the intense X-ray beams at the BioCAT facility in the Advanced Photon Source. The proteins were chosen based upon the best structures available from the Protein Data Bank that had already been observed with and without ligands using X-ray crystallography.

"We chose proteins that already had crystal structures so that we could assess just how good the WAXS technique is," said lead-author Bob Fischetti, of both Argonne’s Advanced Photon Source and Biosciences Division, "And of course we wanted to convince people that what we were seeing is real."

The tested proteins displayed changes that directly corresponded to those documented from the crystal structures, proving the observations were real and validating the method as a potential drug discovery tool.

The other author on the report, in addition to Fischetti, Rodi and Makowski is David B. Gore (BioCAT, Advanced Photon Source, Argonne).

The researchers have submitted a grant proposal request to the National Institutes of Health for possible funding of future studies with WAXS.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>