Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach studying protein structure could advance drug development

09.12.2004


Developed by biologists at Argonne National Lab



Structural changes in proteins can now be seen in increased detail, using a new application of an existing technique. The application, developed at the U.S. Department of Energy’s Argonne National Laboratory, could help produce lead drugs for disease therapy.

In research published in Chemistry and Biology, the scientists report the use of wide angle X-ray scattering (WAXS), an X-ray diffraction technique that has previously been used to determine the crystalline structures of polymers. The biologists adapted this materials science technique to study ligand-induced structural changes in proteins. Ligands are molecules that can cause the creation of complex compounds in protein structure. The results Argonne scientists achieved using WAXS are comparable to the already accepted predictions of protein structures provided by X-ray crystallography, and are easier and quicker to obtain. The results also show promise for using WAXS as a reliable and high-speed tool for lead drug identification.


WAXS has the potential to identify medicinal drugs that can bind to target proteins and to determine how effective drugs are at binding to and modifying their targeted proteins. The technique is sensitive enough to tell the difference between a ligand that’s just sticking to the surface of a protein (a drug that may have no effect) and a ligand that’s actually changing the structure (a drug that is more likely to be effective). In the past, detecting this difference required the use of several techniques combined. No other previous technique has been able to distinguish the difference on its own, or as quickly.

"Wide angle X-ray scattering provides a real tool for identifying lead drugs," said co-author Lee Makowski of Argonne’s Biosciences Division, "It will identify a molecule that’s good enough to be developed as a drug."

The researchers believe WAXS will allow scientists to study more protein-ligand interactions at a faster and cheaper rate than the existing laborious and expensive X-ray crystallography. "The data collection only takes a couple of minutes," said Makowski, "So theoretically an industrial pipeline could be set up that would only be limited by a few minutes per protein-small molecule interaction." Functional cell-based assays (which are needed for other methods) currently take weeks, if not months to complete--causing a bottleneck in data collection and analysis.

Furthermore, high quality crystal structures are tough to attain, and only a limited number of proteins have documented crystal structures of the protein with and without a ligand present. "There is no other technique like this out there," said co-author Diane Rodi from Argonne’s Biosciences Division, "You can see more detailed changes that take place in protein-ligand interactions in solution than you can with any other technique. And more protein-ligand interactions can be tested."

No previous available technique is able to show the magnitude of protein structure change in the absence of a crystal structure. Small angle X-ray scattering (SAXS) is able to show the size and shape of the protein, but does not show details about the change. Circular dichroism spectroscopy (a method that provides structural information on many types of biological macromolecules) doesn’t show the level of detailed changes WAXS provides.

WAXS does not require any crystallization, but uses the same X-ray scattering procedure as crystallography. The technique involves placing the protein and ligand in a water-based solution and then placing this solution in the path of an X-ray beam. The resulting X-ray scattering pattern reveals information about the detailed structure of the protein-ligand complex, which can then be contrasted with a scattering pattern of the protein alone.

The researchers at Argonne tested four proteins plus and minus their corresponding ligands using WAXS, which uses the intense X-ray beams at the BioCAT facility in the Advanced Photon Source. The proteins were chosen based upon the best structures available from the Protein Data Bank that had already been observed with and without ligands using X-ray crystallography.

"We chose proteins that already had crystal structures so that we could assess just how good the WAXS technique is," said lead-author Bob Fischetti, of both Argonne’s Advanced Photon Source and Biosciences Division, "And of course we wanted to convince people that what we were seeing is real."

The tested proteins displayed changes that directly corresponded to those documented from the crystal structures, proving the observations were real and validating the method as a potential drug discovery tool.

The other author on the report, in addition to Fischetti, Rodi and Makowski is David B. Gore (BioCAT, Advanced Photon Source, Argonne).

The researchers have submitted a grant proposal request to the National Institutes of Health for possible funding of future studies with WAXS.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>