Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Developed At UCSD For Deciphering

15.06.2004


A team led by University of California San Diego neurobiologists has developed a new approach to interpreting brain electroencephalograms, or EEGs, that provides an unprecedented view of thought in action and has the potential to advance our understanding of disorders like epilepsy and autism.


Image of the brain with colored spheres indicating clusters of activity
Photo Credit: Scott Makeig



The new information processing and visualization methods that make it possible to follow activation in different areas of the brain dynamically are detailed in a paper featured on the cover of the June 15 issue of the journal Public Library of Science Biology (plos.org) The significance of the advance is that thought processes occur on the order of milliseconds—thousandths of a second—but current brain imaging techniques, such as functional Magnetic Resonance Imaging and traditional EEGs, are averaged over seconds. This provides a “blurry” picture of how the neural circuits in the brain are activated, just as a picture of waves breaking on the shore would be a blur if it were created from the average of multiple snapshots.

“Our paper is the culmination of eight years of work to find a new way to parse EEG data and identify the individual signals coming from different areas of the brain,” says lead author Scott Makeig, a research scientist in UCSD’s Swartz Center for Computational Neuroscience of the Institute for Neural Computation. “This much more comprehensive view of brain dynamics was only made possible by exploiting recent advances in mathematics and increases in computing power. We expect many clinical applications to flow from the method and have begun collaborations to study patients with epilepsy and autism.”


To take an EEG, recording electrodes—small metal disks—are attached to the scalp. These electrodes can detect the tiny electrical impulses nerve cells in the brain send to communicate with each other. However, interpreting the pattern of electrical activity recorded by the electrodes is complicated because each scalp electrode indiscriminately sums all of the electrical signals it detects from the brain and non-brain sources, like muscles in the scalp and the eyes.

“The challenge of interpreting an EEG is that you have a composite of signals from all over the brain and you need to find out what sources actually contributed to the pattern,” explains Makeig. “It is a bit like listening in on a cocktail party and trying to isolate the sound of each voice. We found that it is possible, using a mathematical technique called Independent Component Analysis, to separate each signal or “voice” in the brain by just treating the voices as separate sources of information, but without other prior knowledge about each voice.”

Independent component analysis, or ICA, looks at the distinctiveness of activity in each patch of the brain’s cortex. It uses this information to determine the location of the patch and separate out the signals from non-brain sources. Because ICA can distinguish signals that are active at the same time, it makes it possible to identify the electrical signals in the brain that correspond to the brain telling the muscles to take an action —which in the paper was deciding whether or not to press a button in response to an image flashed on a computer screen—and to separate this signal from the signals the brain uses to evaluate the consequences of that action.

According to Makeig, UCSD was a leader in developing the earlier methods of interpreting EEGs forty years ago. “The new, more general ’ICA’ method continues this tradition of UCSD excellence in cognitive electrophysiology research,” he says.

The coauthors on the paper, in addition to Makeig, include Arnaud Delorme and Tzyy-Ping Jung, Swartz Center for Computational Neuroscience; Marissa Westerfield and Jeanne Townsend, UCSD’s Department of Neurosciences; Eric Courchesne, Children’s Hospital Research Center and UCSD’s Department of Neurosciences; and Terrence Sejnowski, UCSD professor of biology and Howard Hughes Medical Institute professor at the Swartz Center for Computational Neuroscience and the Salk Institute for Biological Studies. The study was funded by the Swartz Foundation, the National Institutes of Health and the Howard Hughes Medical Institute.

Sherry Seethaler | University of California
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sneweegs.asp

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>