Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key advance reported in regenerating nerve fibers

18.02.2004


Two-pronged approach synergizes growth

Researchers at Children’s Hospital Boston and Harvard Medical School have advanced a decades-old quest to get injured nerves to regenerate. By combining two strategies – activating nerve cells’ natural growth state and using gene therapy to mute the effects of growth-inhibiting factors – they achieved about three times more regeneration of nerve fibers than previously attained.

The study involved the optic nerve, which connects nerve cells in the retina with visual centers in the brain, but the Children’s team has already begun to extend the approach to nerves damaged by spinal cord injury, stroke, and certain neurodegenerative diseases. Results appear in the February 18th Journal of Neuroscience.



Normally, injured nerve fibers, known as axons, can’t regenerate. Axons conduct impulses away from the body of the nerve cell, forming connections with other nerve cells or with muscles. One reason axons can’t regenerate has been known for about 15 years: Several proteins in the myelin, an insulating sheath wrapped around the axons, strongly suppress growth. Over the past two years, researchers have developed techniques that disable the inhibitory action of myelin proteins, but this approach by itself has produced relatively little axon growth.

The Children’s Hospital team, led by Dr. Larry Benowitz, director of Neuroscience Research, reasoned that blocking inhibition alone would be like trying to drive a car only by taking a foot off the brake. "Our idea was to step on the gas – to activate the growth state at the same time," Benowitz said. "Knocking out inhibitory molecules alone is not enough, because the nerve cells themselves are still in a sluggish state."

The researchers injured the optic nerves of rats, then used a two-pronged approach to get the axons to regenerate. To gas up the sluggish nerve cells, Dr. Dietmar Fischer, first author of the study, caused an inflammatory reaction by deliberately injuring the lens of the eye. Though seemingly harmful, this injury actually stimulates immune cells known as macrophages to travel to the site and release growth factors. As Benowitz’s lab had found previously, these growth factors activated genes in the retinal nerve cells, causing new axons to grow into the optic nerve.

To try to enhance this growth, the researchers added a gene-therapy technique. Using a modified, non-infectious virus as a carrier, they transferred a gene developed by co-investigator Dr. Zhigang He into retinal nerve cells that effectively removed the "braking" action of the myelin proteins – spurring production of a molecule that sopped these inhibitory proteins up before they could block growth.

"When we combined these two therapies – activating the growth program in nerve cells and overcoming the inhibitory signaling – we got very dramatic regeneration," said Benowitz, who is also an associate professor of neurosurgery at Harvard Medical School and holds a Ph.D. in biology/psychobiology. The amount of axon regeneration wasn’t enough to restore sight, but was about triple that achieved by stimulating growth factors alone, he said.

Benowitz’s lab will continue working with the optic nerve in hopes of restoring vision. "We have to fine-tune the system, and we have some ideas of how to do it," Benowitz said. "But then we come to another big hurdle." That hurdle is getting the nerve fibers from the eye to hook up to the correct centers in the brain in such a way that visual images do not become scrambled. "It’s a mapping problem," Benowitz said. "We have to retain the proper organization of fiber projections to the brain."

Meanwhile, he and his colleagues have begun using a similar two-pronged approach to regrow axons damaged by stroke or spinal-cord injury. They have already found a way to step on the gas – using a small molecule known as inosine to switch damaged nerve cells in the cerebral cortex into a growth state. In 2002, they reported that inosine helped stroke-impaired rats to regrow nerve connections between brain and spinal cord and partially recover motor function.


The current research was supported by the National Eye Institutes, Boston Life Sciences Inc., the German Research Foundation, and the Paralyzed Veterans of America.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for more than 130 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Children’s is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital visit: www.childrenshospital.org

Aaron Patnode | EurekAlert!
Further information:
http://www.childrenshospital.org/

More articles from Life Sciences:

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>