Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key advance reported in regenerating nerve fibers

18.02.2004


Two-pronged approach synergizes growth

Researchers at Children’s Hospital Boston and Harvard Medical School have advanced a decades-old quest to get injured nerves to regenerate. By combining two strategies – activating nerve cells’ natural growth state and using gene therapy to mute the effects of growth-inhibiting factors – they achieved about three times more regeneration of nerve fibers than previously attained.

The study involved the optic nerve, which connects nerve cells in the retina with visual centers in the brain, but the Children’s team has already begun to extend the approach to nerves damaged by spinal cord injury, stroke, and certain neurodegenerative diseases. Results appear in the February 18th Journal of Neuroscience.



Normally, injured nerve fibers, known as axons, can’t regenerate. Axons conduct impulses away from the body of the nerve cell, forming connections with other nerve cells or with muscles. One reason axons can’t regenerate has been known for about 15 years: Several proteins in the myelin, an insulating sheath wrapped around the axons, strongly suppress growth. Over the past two years, researchers have developed techniques that disable the inhibitory action of myelin proteins, but this approach by itself has produced relatively little axon growth.

The Children’s Hospital team, led by Dr. Larry Benowitz, director of Neuroscience Research, reasoned that blocking inhibition alone would be like trying to drive a car only by taking a foot off the brake. "Our idea was to step on the gas – to activate the growth state at the same time," Benowitz said. "Knocking out inhibitory molecules alone is not enough, because the nerve cells themselves are still in a sluggish state."

The researchers injured the optic nerves of rats, then used a two-pronged approach to get the axons to regenerate. To gas up the sluggish nerve cells, Dr. Dietmar Fischer, first author of the study, caused an inflammatory reaction by deliberately injuring the lens of the eye. Though seemingly harmful, this injury actually stimulates immune cells known as macrophages to travel to the site and release growth factors. As Benowitz’s lab had found previously, these growth factors activated genes in the retinal nerve cells, causing new axons to grow into the optic nerve.

To try to enhance this growth, the researchers added a gene-therapy technique. Using a modified, non-infectious virus as a carrier, they transferred a gene developed by co-investigator Dr. Zhigang He into retinal nerve cells that effectively removed the "braking" action of the myelin proteins – spurring production of a molecule that sopped these inhibitory proteins up before they could block growth.

"When we combined these two therapies – activating the growth program in nerve cells and overcoming the inhibitory signaling – we got very dramatic regeneration," said Benowitz, who is also an associate professor of neurosurgery at Harvard Medical School and holds a Ph.D. in biology/psychobiology. The amount of axon regeneration wasn’t enough to restore sight, but was about triple that achieved by stimulating growth factors alone, he said.

Benowitz’s lab will continue working with the optic nerve in hopes of restoring vision. "We have to fine-tune the system, and we have some ideas of how to do it," Benowitz said. "But then we come to another big hurdle." That hurdle is getting the nerve fibers from the eye to hook up to the correct centers in the brain in such a way that visual images do not become scrambled. "It’s a mapping problem," Benowitz said. "We have to retain the proper organization of fiber projections to the brain."

Meanwhile, he and his colleagues have begun using a similar two-pronged approach to regrow axons damaged by stroke or spinal-cord injury. They have already found a way to step on the gas – using a small molecule known as inosine to switch damaged nerve cells in the cerebral cortex into a growth state. In 2002, they reported that inosine helped stroke-impaired rats to regrow nerve connections between brain and spinal cord and partially recover motor function.


The current research was supported by the National Eye Institutes, Boston Life Sciences Inc., the German Research Foundation, and the Paralyzed Veterans of America.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for more than 130 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Children’s is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital visit: www.childrenshospital.org

Aaron Patnode | EurekAlert!
Further information:
http://www.childrenshospital.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>