Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A common cleanser is cheaper and faster way to separate DNA for genetic analysis

10.02.2004


By identifying a 30-year-old mistaken assumption, Johns Hopkins Kimmel Cancer Center scientists have found that substituting a simple bleach solution for more complex tools makes a DNA separation technique called electrophoresis five times faster and less costly.




Reported in the February issue of BioTechniques, the scientists say that using the compound sodium boric acid in DNA electrophoresis may speed genetic discoveries. The scientists searched old literature and dozens of compounds to find one that could replace antiquated solutions used to conduct the electric current necessary to separate negatively charged DNA molecules, the building blocks of genetic code. In electrophoresis, DNA is fed through porous, jellylike slabs of sugar (also known as a ’DNA gel’) to reveal the outlines of the code, with small DNA molecules crawling up the gel faster than less mobile larger particles as the current passes through.

Like the two poles on a battery, the difference in the positive and negative charges represents a voltage. "DNA just needs to know it’s in a voltage and it will move," says Scott Kern, M.D., professor of oncology and pathology at the Johns Hopkins Kimmel Cancer Center. "So, the most important feature of a solution in electrophoresis is its ability to carry a voltage."


Solutions historically used for DNA electrophoresis are called Tris-acetic acid-disodium EDTA (TAE) and Tris-boric acid-disodium EDTA (TBE). For 30 years, scientists have mistakenly assumed these solutions were good conductors and ’buffers.’ Buffers serve to reduce acidity or pH and were used for protein electrophoresis in the 1950s. They are still used today and work well in protein electrophoresis because pH balance is important for separating proteins, which in their natural state carry an unpredictable charge.

However, Kern and postdoctoral fellow Jonathan Brody conducted experiments demonstrating that TBE and TAE provide only some buffering -- which they say isn’t important anyway for DNA separation – and too much conductivity. "In fact, TBE and TAE essentially short-circuit DNA gels by creating too much current and heat." Gels using TBE and TAE at high voltage are known to melt and distort DNA particle movement.

"Our work opened up the door to try different solutions," says Brody. "But there was no theory to predict which compound would work better."

After more than two months of trial and error experimentation, Brody settled on sodium boric acid. "It has great resolution at high voltages. I can now run a gel in 15 minutes using sodium borate as opposed to an hour and half with TBE or TAE," says Brody. "It’s like switching from a dial-up modem to a high-speed Internet connection. You never want to go back."

Cost per gel of sodium boric acid is $0.07 as compared with TAE $0.27 and TBE $0.67. The scientists estimate industry savings of $37 million annually based on the total market for DNA gels in the United States.

"In science, as in any other profession, to some extent, you accept what you’re taught and everybody was taught to use the same tools for extracting the components of DNA," says Kern. "Scientists 30 years ago made no claim that these were the best tools, but when other scientists asked them what they used, they told them, and then, like a herd, everyone followed and accepted it."

Kern and Brody have filed for a provisional patent on the sodium boric acid solution. They are entitled to royalty payments from and own equity in FasterBetterMedia, LLC, the company that is commercializing this product.


###

Vanessa Wasta | JHMI
Further information:
http://www.fasterbettermedia.com
http://www.hopkinskimmelcancercenter.org
http://www.hopkinsmedicine.org/Press_releases/2004/02_09_04.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>