Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A common cleanser is cheaper and faster way to separate DNA for genetic analysis

10.02.2004


By identifying a 30-year-old mistaken assumption, Johns Hopkins Kimmel Cancer Center scientists have found that substituting a simple bleach solution for more complex tools makes a DNA separation technique called electrophoresis five times faster and less costly.




Reported in the February issue of BioTechniques, the scientists say that using the compound sodium boric acid in DNA electrophoresis may speed genetic discoveries. The scientists searched old literature and dozens of compounds to find one that could replace antiquated solutions used to conduct the electric current necessary to separate negatively charged DNA molecules, the building blocks of genetic code. In electrophoresis, DNA is fed through porous, jellylike slabs of sugar (also known as a ’DNA gel’) to reveal the outlines of the code, with small DNA molecules crawling up the gel faster than less mobile larger particles as the current passes through.

Like the two poles on a battery, the difference in the positive and negative charges represents a voltage. "DNA just needs to know it’s in a voltage and it will move," says Scott Kern, M.D., professor of oncology and pathology at the Johns Hopkins Kimmel Cancer Center. "So, the most important feature of a solution in electrophoresis is its ability to carry a voltage."


Solutions historically used for DNA electrophoresis are called Tris-acetic acid-disodium EDTA (TAE) and Tris-boric acid-disodium EDTA (TBE). For 30 years, scientists have mistakenly assumed these solutions were good conductors and ’buffers.’ Buffers serve to reduce acidity or pH and were used for protein electrophoresis in the 1950s. They are still used today and work well in protein electrophoresis because pH balance is important for separating proteins, which in their natural state carry an unpredictable charge.

However, Kern and postdoctoral fellow Jonathan Brody conducted experiments demonstrating that TBE and TAE provide only some buffering -- which they say isn’t important anyway for DNA separation – and too much conductivity. "In fact, TBE and TAE essentially short-circuit DNA gels by creating too much current and heat." Gels using TBE and TAE at high voltage are known to melt and distort DNA particle movement.

"Our work opened up the door to try different solutions," says Brody. "But there was no theory to predict which compound would work better."

After more than two months of trial and error experimentation, Brody settled on sodium boric acid. "It has great resolution at high voltages. I can now run a gel in 15 minutes using sodium borate as opposed to an hour and half with TBE or TAE," says Brody. "It’s like switching from a dial-up modem to a high-speed Internet connection. You never want to go back."

Cost per gel of sodium boric acid is $0.07 as compared with TAE $0.27 and TBE $0.67. The scientists estimate industry savings of $37 million annually based on the total market for DNA gels in the United States.

"In science, as in any other profession, to some extent, you accept what you’re taught and everybody was taught to use the same tools for extracting the components of DNA," says Kern. "Scientists 30 years ago made no claim that these were the best tools, but when other scientists asked them what they used, they told them, and then, like a herd, everyone followed and accepted it."

Kern and Brody have filed for a provisional patent on the sodium boric acid solution. They are entitled to royalty payments from and own equity in FasterBetterMedia, LLC, the company that is commercializing this product.


###

Vanessa Wasta | JHMI
Further information:
http://www.fasterbettermedia.com
http://www.hopkinskimmelcancercenter.org
http://www.hopkinsmedicine.org/Press_releases/2004/02_09_04.html

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>