Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Tip

10.12.2003


USC researcher Liman investigates taste buds -- made up of bundles of 50 to 100 taste cells -- to better understand how animals detect sweet, bitter and umami flavors.

Photo/Rudy Moro


Put a caramel in your mouth and your taste buds detect the sugary substance, instantly sending a message to the brain, which interprets the signal - sweet!

Trying to figure out what happens in the split-second between eating something and recognizing its sweet or bitter flavor - between detecting a taste and a signal reaching the brain - led USC neuroscientist Emily Liman to take a closer look inside the cells in the taste buds.

Her findings reveal new details about how the sense of taste works.



And calcium, said Liman, plays a key role in the detection of tastes by taste cells in the tongue.

The research by Liman, an assistant professor of biological sciences in the USC College of Letters, Arts & Sciences, and graduate student Dan Liu will be published in the Proceedings of the National Academy of Sciences this month. The paper also offers a molecular model of how taste cells reset so they are ready to detect new tastes.

The study appeared online Dec. 1 in the journal’s early edition.

Until recently, scientists have known little about how taste works on a cellular or molecular level. Just four years ago, scientists officially added a unique taste, called umami, to the list of the better known: sweet, bitter, salty and sour.

Umami receptors are sensitive to the amino acid glutamate, which most think serves as a marker for protein-rich foods.

Glutamate also is the main ingredient in the commonly used flavor additive MSG (monosodium glutamate), which may explain the additive’s appeal.

Taste research has attracted the attention of researchers like Liman who are interested in unraveling how cellular signaling works.

Food and drug industry scientists also are very interested in understanding the molecular details of taste, especially bitter and sweet, Liman said.

“It’s important to know how taste works and to identify the molecules involved,” she said. “These molecules can be targets for designing chemicals that activate taste - for example, a better artificial sweetener - or that block taste, such as an additive that could be used to block bitter tastes.”

In the study, Liman and Liu looked closely at a protein necessary for detecting sweet, bitter and umami tastes.

Without the protein, called TRPM5, mice can’t discern between the flavors.

Once activated, the protein appears to play a key role in the taste-signaling pathway, somehow sending a message to the brain about what’s been tasted..

Liman, who has investigated similar issues relating to the sense of smell and pheromone detection, studied how this protein worked in an experimental cell system.

She found that the protein acts like a gated bridge on the cell’s membrane, connecting the inside and outside of the cell. The gate opened when the researchers added calcium ions.

In general, proteins like TRPM5 are considered good potential drug targets because their position on the cell surface makes them more accessible than proteins inside the cell.

In other experiments, Liman and Liu figured out that the protein TRPM5 closes as it undergoes desensitization to taste.

Desensitization is what allows a person to adapt to a strong taste or smell over time, perhaps barely noticing it after a while.

The researchers also found that the TRPM5 protein gate opens up again through an interaction with another cellular molecule called PIP2.

Liman cautioned that her team has yet to show conclusively that calcium is responsible for the initiation of the signal to the brain.

To prove this, she will have to see whether her laboratory studies apply to taste cells in living animals, experiments she hopes to start soon.

Eva Emerson | USC
Further information:
http://www.usc.edu/uscnews/story.php?id=9616

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>