Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Tip

10.12.2003


USC researcher Liman investigates taste buds -- made up of bundles of 50 to 100 taste cells -- to better understand how animals detect sweet, bitter and umami flavors.

Photo/Rudy Moro


Put a caramel in your mouth and your taste buds detect the sugary substance, instantly sending a message to the brain, which interprets the signal - sweet!

Trying to figure out what happens in the split-second between eating something and recognizing its sweet or bitter flavor - between detecting a taste and a signal reaching the brain - led USC neuroscientist Emily Liman to take a closer look inside the cells in the taste buds.

Her findings reveal new details about how the sense of taste works.



And calcium, said Liman, plays a key role in the detection of tastes by taste cells in the tongue.

The research by Liman, an assistant professor of biological sciences in the USC College of Letters, Arts & Sciences, and graduate student Dan Liu will be published in the Proceedings of the National Academy of Sciences this month. The paper also offers a molecular model of how taste cells reset so they are ready to detect new tastes.

The study appeared online Dec. 1 in the journal’s early edition.

Until recently, scientists have known little about how taste works on a cellular or molecular level. Just four years ago, scientists officially added a unique taste, called umami, to the list of the better known: sweet, bitter, salty and sour.

Umami receptors are sensitive to the amino acid glutamate, which most think serves as a marker for protein-rich foods.

Glutamate also is the main ingredient in the commonly used flavor additive MSG (monosodium glutamate), which may explain the additive’s appeal.

Taste research has attracted the attention of researchers like Liman who are interested in unraveling how cellular signaling works.

Food and drug industry scientists also are very interested in understanding the molecular details of taste, especially bitter and sweet, Liman said.

“It’s important to know how taste works and to identify the molecules involved,” she said. “These molecules can be targets for designing chemicals that activate taste - for example, a better artificial sweetener - or that block taste, such as an additive that could be used to block bitter tastes.”

In the study, Liman and Liu looked closely at a protein necessary for detecting sweet, bitter and umami tastes.

Without the protein, called TRPM5, mice can’t discern between the flavors.

Once activated, the protein appears to play a key role in the taste-signaling pathway, somehow sending a message to the brain about what’s been tasted..

Liman, who has investigated similar issues relating to the sense of smell and pheromone detection, studied how this protein worked in an experimental cell system.

She found that the protein acts like a gated bridge on the cell’s membrane, connecting the inside and outside of the cell. The gate opened when the researchers added calcium ions.

In general, proteins like TRPM5 are considered good potential drug targets because their position on the cell surface makes them more accessible than proteins inside the cell.

In other experiments, Liman and Liu figured out that the protein TRPM5 closes as it undergoes desensitization to taste.

Desensitization is what allows a person to adapt to a strong taste or smell over time, perhaps barely noticing it after a while.

The researchers also found that the TRPM5 protein gate opens up again through an interaction with another cellular molecule called PIP2.

Liman cautioned that her team has yet to show conclusively that calcium is responsible for the initiation of the signal to the brain.

To prove this, she will have to see whether her laboratory studies apply to taste cells in living animals, experiments she hopes to start soon.

Eva Emerson | USC
Further information:
http://www.usc.edu/uscnews/story.php?id=9616

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>