Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a pattern in evolution of lizard groups

15.08.2003


Evolutionary biologists have developed a wide range of techniques to reconstruct the evolutionary history of particular groups of plants and animals. These techniques reveal much about the diverse patterns of evolution of life on earth, but few generalities have emerged, leading many scientists, such as the late Stephen Jay Gould, to conclude that each group of living things evolves in its own idiosyncratic manner. But now biologists at Washington University in St. Louis have proposed a general pattern among groups in the timing of evolutionary diversification.



Using novel statistical and analytical techniques, a group headed by Jonathan Losos, Ph.D. and Allan Larson, Ph.D., both Washington University professors of biology in Arts & Sciences, examined two important dimensions in the evolutionary diversification of four groups of lizards: the ages of branching points on the evolutionary trees of the lizard groups and variation among branches in morphological (body) traits, such as limb length and head size.

The researchers found that the four lizard groups differed in both respects. For example, in Australian agamid lizards, a disproportionate number of branching events occur deep (early) in the evolutionary tree, whereas, at the other extreme, among the South American Liolaemus lizards, the branching points are evenly distributed throughout the tree.


Similarly, the distribution of morphological variation differed in the four groups. In the agamids, closely related species tend to be morphologically similar and distantly related species morphologically different, whereas this relationship is much weaker for Liolaemus . In both cases, the other two lizard groups were intermediate.

What was most surprising to the researchers was that, despite the many differences among the four lizard groups, a strong overall relationship was found between the two aspects of evolutionary diversification. "This correlation was a big surprise," said Losos. "The general worldview is that the history of each lineage is unique and due to varying circumstances so that no general pattern exists. Our findings tend to dispute that."

The results were published in the August 15 issue of Science magazine. The research was supported by the National Science Foundation.

To reach their conclusions, the researchers produced a detailed genetic phylogeny (think of a branching family tree) for all species and physical data for the different species body types. Co-author James A Schulte, Ph.D., a former member of the Losos and Larson laboratories, now a post-doctoral researcher at the Smithsonian Museum of Natural History, gathered much of the phylogenetic and morphological data. Washington university graduate student Luke Harmon, the lead author on the paper, created a statistical program that uses phylogenies derived from genetic information (DNA sequences) from each species to estimate the patterns of branching and morphological change in each group.

"We can use the shape of these phylogenies, or evolutionary trees, to make conclusions about evolution," said Harmon. "For example, we can compare the lengths of branches on these family trees to determine the rate that new species were formed. Deeper branches on trees connecting species indicate older branching, while shorter ones indicate more recent speciation. People have been studying these patterns with fossil evidence for some time, but there is not much of a fossil record for lizards and many other terrestrial groups. I think the results will help biologists understand adaptive radiation better."

"We tentatively explain our main finding using ecological and biogeographic theory," said Larson. "Ecological theory suggests that ecologically similar species are unable to coexist through long periods of time in the same geographic area. If lineages with different ecological adaptations arose early in the history of a group, their descendants could coexist geographically through long periods of evolutionary time by maintaining those differences. If a group does not establish ecologically disparate lineages early in its history, lineages produced at the tips of the tree are more likely to explore a wide diversity of ecological roles."

Lizards have been on the earth for more than 200 million years. There are as many lizard species as there are mammal species, and they make excellent models to study for evolution, said Losos, who has been studying Anolis and other lizards for more than a decade. He and his collaborators plan to analyze more lizard groups to see if the general patterns revealed in this report hold.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>