Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a pattern in evolution of lizard groups

15.08.2003


Evolutionary biologists have developed a wide range of techniques to reconstruct the evolutionary history of particular groups of plants and animals. These techniques reveal much about the diverse patterns of evolution of life on earth, but few generalities have emerged, leading many scientists, such as the late Stephen Jay Gould, to conclude that each group of living things evolves in its own idiosyncratic manner. But now biologists at Washington University in St. Louis have proposed a general pattern among groups in the timing of evolutionary diversification.



Using novel statistical and analytical techniques, a group headed by Jonathan Losos, Ph.D. and Allan Larson, Ph.D., both Washington University professors of biology in Arts & Sciences, examined two important dimensions in the evolutionary diversification of four groups of lizards: the ages of branching points on the evolutionary trees of the lizard groups and variation among branches in morphological (body) traits, such as limb length and head size.

The researchers found that the four lizard groups differed in both respects. For example, in Australian agamid lizards, a disproportionate number of branching events occur deep (early) in the evolutionary tree, whereas, at the other extreme, among the South American Liolaemus lizards, the branching points are evenly distributed throughout the tree.


Similarly, the distribution of morphological variation differed in the four groups. In the agamids, closely related species tend to be morphologically similar and distantly related species morphologically different, whereas this relationship is much weaker for Liolaemus . In both cases, the other two lizard groups were intermediate.

What was most surprising to the researchers was that, despite the many differences among the four lizard groups, a strong overall relationship was found between the two aspects of evolutionary diversification. "This correlation was a big surprise," said Losos. "The general worldview is that the history of each lineage is unique and due to varying circumstances so that no general pattern exists. Our findings tend to dispute that."

The results were published in the August 15 issue of Science magazine. The research was supported by the National Science Foundation.

To reach their conclusions, the researchers produced a detailed genetic phylogeny (think of a branching family tree) for all species and physical data for the different species body types. Co-author James A Schulte, Ph.D., a former member of the Losos and Larson laboratories, now a post-doctoral researcher at the Smithsonian Museum of Natural History, gathered much of the phylogenetic and morphological data. Washington university graduate student Luke Harmon, the lead author on the paper, created a statistical program that uses phylogenies derived from genetic information (DNA sequences) from each species to estimate the patterns of branching and morphological change in each group.

"We can use the shape of these phylogenies, or evolutionary trees, to make conclusions about evolution," said Harmon. "For example, we can compare the lengths of branches on these family trees to determine the rate that new species were formed. Deeper branches on trees connecting species indicate older branching, while shorter ones indicate more recent speciation. People have been studying these patterns with fossil evidence for some time, but there is not much of a fossil record for lizards and many other terrestrial groups. I think the results will help biologists understand adaptive radiation better."

"We tentatively explain our main finding using ecological and biogeographic theory," said Larson. "Ecological theory suggests that ecologically similar species are unable to coexist through long periods of time in the same geographic area. If lineages with different ecological adaptations arose early in the history of a group, their descendants could coexist geographically through long periods of evolutionary time by maintaining those differences. If a group does not establish ecologically disparate lineages early in its history, lineages produced at the tips of the tree are more likely to explore a wide diversity of ecological roles."

Lizards have been on the earth for more than 200 million years. There are as many lizard species as there are mammal species, and they make excellent models to study for evolution, said Losos, who has been studying Anolis and other lizards for more than a decade. He and his collaborators plan to analyze more lizard groups to see if the general patterns revealed in this report hold.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>