Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a pattern in evolution of lizard groups

15.08.2003


Evolutionary biologists have developed a wide range of techniques to reconstruct the evolutionary history of particular groups of plants and animals. These techniques reveal much about the diverse patterns of evolution of life on earth, but few generalities have emerged, leading many scientists, such as the late Stephen Jay Gould, to conclude that each group of living things evolves in its own idiosyncratic manner. But now biologists at Washington University in St. Louis have proposed a general pattern among groups in the timing of evolutionary diversification.



Using novel statistical and analytical techniques, a group headed by Jonathan Losos, Ph.D. and Allan Larson, Ph.D., both Washington University professors of biology in Arts & Sciences, examined two important dimensions in the evolutionary diversification of four groups of lizards: the ages of branching points on the evolutionary trees of the lizard groups and variation among branches in morphological (body) traits, such as limb length and head size.

The researchers found that the four lizard groups differed in both respects. For example, in Australian agamid lizards, a disproportionate number of branching events occur deep (early) in the evolutionary tree, whereas, at the other extreme, among the South American Liolaemus lizards, the branching points are evenly distributed throughout the tree.


Similarly, the distribution of morphological variation differed in the four groups. In the agamids, closely related species tend to be morphologically similar and distantly related species morphologically different, whereas this relationship is much weaker for Liolaemus . In both cases, the other two lizard groups were intermediate.

What was most surprising to the researchers was that, despite the many differences among the four lizard groups, a strong overall relationship was found between the two aspects of evolutionary diversification. "This correlation was a big surprise," said Losos. "The general worldview is that the history of each lineage is unique and due to varying circumstances so that no general pattern exists. Our findings tend to dispute that."

The results were published in the August 15 issue of Science magazine. The research was supported by the National Science Foundation.

To reach their conclusions, the researchers produced a detailed genetic phylogeny (think of a branching family tree) for all species and physical data for the different species body types. Co-author James A Schulte, Ph.D., a former member of the Losos and Larson laboratories, now a post-doctoral researcher at the Smithsonian Museum of Natural History, gathered much of the phylogenetic and morphological data. Washington university graduate student Luke Harmon, the lead author on the paper, created a statistical program that uses phylogenies derived from genetic information (DNA sequences) from each species to estimate the patterns of branching and morphological change in each group.

"We can use the shape of these phylogenies, or evolutionary trees, to make conclusions about evolution," said Harmon. "For example, we can compare the lengths of branches on these family trees to determine the rate that new species were formed. Deeper branches on trees connecting species indicate older branching, while shorter ones indicate more recent speciation. People have been studying these patterns with fossil evidence for some time, but there is not much of a fossil record for lizards and many other terrestrial groups. I think the results will help biologists understand adaptive radiation better."

"We tentatively explain our main finding using ecological and biogeographic theory," said Larson. "Ecological theory suggests that ecologically similar species are unable to coexist through long periods of time in the same geographic area. If lineages with different ecological adaptations arose early in the history of a group, their descendants could coexist geographically through long periods of evolutionary time by maintaining those differences. If a group does not establish ecologically disparate lineages early in its history, lineages produced at the tips of the tree are more likely to explore a wide diversity of ecological roles."

Lizards have been on the earth for more than 200 million years. There are as many lizard species as there are mammal species, and they make excellent models to study for evolution, said Losos, who has been studying Anolis and other lizards for more than a decade. He and his collaborators plan to analyze more lizard groups to see if the general patterns revealed in this report hold.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>