UCLA researcher first to solve structure of membrane transport protein

Led by UCLA physiologist H. Ronald Kaback (Sherman Oaks), an international research team’s 12-year mission to solve the structure of an important protein has paid off. Kaback and his colleagues recently captured the three-dimensional structure of lactose permease (LacY), which moves lactose across the cell membrane of E. coli, a common bacterium.

According to Kaback, LacY is a model for a large family of related transport proteins, many of which are associated with human disease.

“We hope that the structure of LacY will offer a useful tool by enabling scientists to understand how other membrane transport proteins work,” said Kaback, a professor of physiology and microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA and a Howard Hughes Medical Institute investigator.

Published in the Aug. 1 edition of Science, the research findings could hold therapeutic implications for diseases such as lactose intolerance, diabetes, stroke and depression, which involve the malfunction of membrane transport proteins.

Crystallographers Jeff Abramson and So Iwata of Imperial College London co-authored the study. The work was partially supported by the National Institutes of Health.

Media Contact

Elaine Schmidt EurekAlert!

More Information:

http://www.ucla.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors