Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success by Learning - Smallest Predator Recognizes Prey by its Shape

16.05.2008
The Etruscan shrew (Suncus etruscus) is one of the world's smallest mammals. It is about four centimetres long and weighs merely two grams.

Being a nocturnal animal, it hunts predominantly with its sense of touch. Professor Michael Brecht (Bernstein Center for Computional Neuroscience, Berlin) now reported on the particularities of its hunting behaviour at the international conference "Development and function of somatosensation and pain" at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany.

"As quick as a flash, the Etruscan shrew scans its prey and adapts, when necessary, its hunting strategy," explained Brecht in his talk. "Thus, no prey escapes."

The smaller an animal is, the greater is its loss of warmth over its surface. To avoid starvation, the Etruscan shrew has to constantly compensate for this life-threatening energy loss. Thus, it consumes twice its weight every day and feeds on crickets, cockroaches, and spiders. Since the prey are nearly as big as their predator, the shrew has to attack fast and well directed.

... more about:
»Etruscan »attack »prey »shrew

Etruscan shrews hunt in the night and must rely on their sense of touch. With long whiskers at the snout, they can locate potential prey and recognize whom exactly they are facing. Afterwards, the shrews kill their prey using directed attacks. The researchers could observe that they track down crickets with a forceful bite in the back. To investigate whether the animals recognize their prey by its shape, they offered the Etruscan shrews a plastic cricket. Though the artificial animal neither moved nor smelled, the Etruscan shrews attacked the plastic prey up to 15 times. "The Etruscan shrews trust in their sense of touch and the tactile shape recognition in an extent we do not know from other animal species," reported Brecht at the MDC conference.

"Also, the animals can adjust quickly to new situations", Brecht pointed out. To examine this theory, the scientists exchanged the living crickets with a giant cockroach. This new animal differs clearly from the natural prey of the shrews. The back of the cockroach is protected by a heavy shield and is therefore saved from the normal attacks of the Etruscan shrews. However, the experiments showed that the shrews succeeded in adapting their natural hunting strategy to the new prey in very short time. Quickly, they realized that the belly is the cockroach's weak point. "The shrews are learning during the hunt and use the new knowledge right away," said Brecht. "Even the giant cockroach can not escape."

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/en/news
http://www.activetouch.de/index.php?id=7
http://www.bccn-berlin.de/ResearchGroups/Brecht

Further reports about: Etruscan attack prey shrew

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>