Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover a novel mechanism that regulates carbon dioxide fixation in plants

04.03.2008
A team of Biotechnology and Biological Sciences Research Council (BBSRC) funded scientists at the University of Essex has discovered a new mechanism that slows the process of carbon dioxide fixation in plants.

The research, published today (4 March 2008) in the Proceedings of the National Academy of Sciences, increases our understanding of this process, which may ultimately lead to crop improvement and ‘fourth generation’ biofuels. The mechanism, which helps to regulate the way in which plants absorb carbon dioxide (CO2) from the atmosphere and turn it into sugars, acts by putting the brakes on sugar production when there is not enough energy from sunlight available. As sunlight increases, the brakes are rapidly released and carbon dioxide fixation speeds away.

Plants are dependent on sunlight to capture carbon dioxide, which is turned into important sugars via a process called the Calvin cycle. As a result, as the amount of sunlight varies during the day (e.g. through cloud cover or shading from other plants), they must also be able to vary the speed at which they capture carbon dioxide from the atmosphere. This ensures that when there is a lot of sunlight, it is taken full advantage of but that when sunlight drops, so does CO2 uptake. This ability to maximise energy use is important for plants and prevents the loss of important metabolic resources. Because they essentially stay in one place, plants must have many unique abilities to adapt to their environment as it changes around them.

The question is how does this variable speed control actually work" The BBSRC-funded research shows for the first time how the Calvin cycle can be regulated in response to a changing light environment via a molecular mechanism. There is a special relationship between two enzymes that are involved in the Calvin cycle – phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). When light levels decrease, the two enzymes tend to stick together and therefore cannot function, thus slowing the Calvin cycle. The darker it is, the more PRK-GAPDH partnerships are formed and the slower the Calvin cycle becomes. In the light, they break apart rapidly and the Calvin cycle is allowed to speed up.

... more about:
»Biofuel »Carbon »Cycle »carbon dioxide »dioxide »fixation »sugar

This fundamental research has revealed a novel mechanism and provides a better understanding of the regulation of CO2 fixation in plants. This work will underpin strategies to increase the amount of carbon dioxide absorbed by plants thereby increasing yield for food and biofuel production, and may ultimately feed into the development of ‘fourth generation’ biofuels.

Research Leader, Professor Christine Raines of the University of Essex, said: “Although this research focuses on the fundamental biological processes that plants use, ultimately, if we can understand these processes, we can use the knowledge to develop and improve food and biofuel crops.”

Dr Tom Howard, who contributed to the research, said: “Plants have evolved a fascinating way to cope with variations in their local environments. Unlike animals, they cannot move on to look for new food sources. This research helps to unlock one way that plants deal with the ultimate variable – the amount of sunshine they receive.”

Professor Nigel Brown, BBSRC Director of Science and Technology said: “With a growing world population and increasing demands for energy we need to consider new ways to improve food and fuel production. Sophisticated basic research in areas which have been studied for many decades, such as this work funded by BBSRC, furthers our understanding of natural processes that have the potential to be harnessed to meet future challenges.”

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk
http://www.pnas.org/cgi/doi/10.1073/pnas.0710518105

Further reports about: Biofuel Carbon Cycle carbon dioxide dioxide fixation sugar

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>