Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult stem cell changes underlie rare genetic disease associated with accelerated aging

04.03.2008
Adult stem cells may provide an explanation for the cause of a Hutchinson-Gilford Progeria Syndrome (HGPS), a rare disease that causes premature aging in children, according to researchers at the National Cancer Institute (NCI), part of the National Institutes of Health (NIH).

These findings, the first to indicate a biological basis for the clinical features of HGPS, also known as progeria, may also provide new insights into the biological mechanisms of normal aging. The results were published in the March, 2008, issue of Nature Cell Biology.

“Studies like this of the biology of HGPS hold the potential to benefit children suffering this terrible illness and enlighten us as to the medical changes we all experience as we grow older.” said NCI Director John E. Niederhuber, M.D. “As our population ages, we have an increasing need for greater understanding of the biology of aging and age-related illness, such as cancer.”

HGPS is an extremely rare hereditary genetic disease of children characterized by signs of premature aging. Children with HGPS generally experience the first symptoms by the age of one, and on average succumb around the age of 15, almost exclusively from premature, progressive heart disease. HGPS occurs in one out of four to eight million births; only 100 patients have been documented in the medical literature. Because its striking cardiovascular effects and other clinical features are so closely associated with the normal aging process, HGPS holds great interest for researchers studying age-related biological changes and disease.

... more about:
»Aging »Clinical »Disease »HGPS »Rare »pathway »stem cells

The cause of HGPS, a mutated protein called progerin, was identified in 2003. However, the mechanism by which progerin causes the widespread clinical effects of HGPS has been unclear. To forge this link between molecular biology and medical outcome, Tom Misteli, Ph.D., head of the Cell Biology of Genomes Group at NCI’s Center for Cancer Research (CCR), and CCR staff scientist Paola Scaffidi, Ph.D., examined the effects of progerin on gene expression in a laboratory model of HGPS. They found that progerin activates genes involved in the Notch signaling pathway, a major regulator of stem cell differentiation -- the process by which stem cells give rise to the mature cells that make up different tissues.

Because most of the tissues affected by HGPS (e.g., skin, fat, muscles, bone, and blood vessels) arise from a common developmental pathway, Misteli and Scaffidi looked at the effects of progerin on adult mesenchymal stem cells, the common cellular ancestor of these tissue types. An adult stem can renew itself, and can differentiate to yield the major specialized cell types of the tissue or organ. Their experiments revealed that progerin profoundly affects the fate of these stem cells, greatly skewing the rate at which they mature into different tissues. For instance, progerin-producing stem cells showed accelerated maturation into bone but failed to develop into fat. This could explain two of the distinguishing clinical features of HGPS: abnormal bone growth and an almost complete loss of the fatty tissues normally found just beneath the skin. The researchers were able to mimic the progerin’s effects in these stem cells by experimentally activating the same components of the Notch pathway targeted by progerin.

Taken together, the results of these experiments provide a new window into the biology behind the clinical features of HGPS. They may also hold relevance for understanding the biology of normal aging. “Progerin is present at low levels in the cells of healthy people,” said Misteli. “One could envision a scenario in which progerin’s effects on the Notch pathway and, by extension, on adult stem cells could, over time, lead to many of the tissue changes we commonly associate with the aging process.”

NCI Press Officers | EurekAlert!
Further information:
http://www.nih.gov
http://www.cancer.gov
http://ccr.nci.nih.gov/staff/staff.asp?profileid=5819

Further reports about: Aging Clinical Disease HGPS Rare pathway stem cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>