Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team probes mysteries of oceanic bacteria

04.03.2008
Microbes living in the oceans play a critical role in regulating Earth's environment, but very little is known about their activities and how they work together to help control natural cycles of water, carbon and energy.

A team of MIT researchers led by Professors Edward DeLong and Penny Chisholm is trying to change that.

Borrowing gene sequencing tools developed for sequencing the human genome, the researchers have devised a new method to analyze gene expression in complex microbial populations. The work could help scientists better understand how oceans respond to climate change.

"This project can help us get a better handle on the specific details of how microbes affect the flux of energy and matter on Earth, and how microbes respond to environmental change," said DeLong, a professor of biological engineering and civil and environmental engineering.

... more about:
»CEE »DNA »DeLong »known »mRNA »microbe »microbial »sequences
"The new approach also has other potential applications, for example, one can now realistically consider using indigenous microbes as in situ biosensors, as well as monitor the activities of human-associated microbial communities much more comprehensively,"

DeLong said.

Their technique, which has already yielded a few surprising discoveries, is reported in the March 3 issue of the Proceedings of the National Academy of Sciences.

The work was facilitated by the Center for Microbial Oceanography:
Research and Education (C-MORE), a National Science Foundation Science and Technology Center established in 2006 to explore microbial ocean life, most of which is not well understood.
The traditional way to study bacteria is to grow them in Petri dishes in a laboratory, but that yields limited information, and not all strains are suited to life in the lab. "The cast of characters we can grow in the lab is a really small percentage of what's out there,"

said DeLong, who is research coordinator for C-MORE.

The MIT team gathers microbe samples from the waters off Hawaii, in a part of the ocean known as the North Pacific Gyre.

Each liter of ocean water they collect contains up to a billion bacterial cells. For several years, researchers have been sequencing the DNA found in those bacteria, creating large databases of prevalent marine microbial genes found in the environment.

However, those DNA sequences alone cannot reveal which genes the bacteria are actually using in their day-to-day activities, or when they are expressing them.

"It's a lot of information, and it's hard to know where to start,"
said DeLong. "How do you know which genes are actually important in any given environmental context?"

To figure out which genes are expressed, DeLong and colleagues sequenced the messenger RNA (mRNA) produced by the cells living in complex microbial communities. mRNA carries instructions to the protein-building machinery of the cell, so if there is a lot of mRNA corresponding to a particular gene, it means that gene is highly expressed.

The new technique requires the researchers to convert bacterial mRNA to eukaryotic (non-bacterial) DNA, which can be more easily amplified and sequenced. They then use sequencing technology that is fast enough to analyze hundreds of millions of DNA base pairs in a day.

Once the sequences of highly expressed mRNA are known, the researchers can compare them with DNA sequences in the database of bacterial genes and try to figure out which genes are key players and what their functions are.

The team found some surprising patterns of gene expression, DeLong said. For example, about half of the mRNA sequences found are not similar to any previously known bacterial genes.

Lead authors of the paper are Jorge Frias-Lopez, research scientist in MIT's Department of Civil and Environmental Engineering (CEE), and CEE graduate student Yanmei Shi. Maureen Coleman, graduate student in CEE, Gene Tyson, postdoctoral associate in CEE, and Stephan Schuster of Pennsylvania State University also authored the paper with Chisholm and DeLong.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: CEE DNA DeLong known mRNA microbe microbial sequences

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>