Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team probes mysteries of oceanic bacteria

04.03.2008
Microbes living in the oceans play a critical role in regulating Earth's environment, but very little is known about their activities and how they work together to help control natural cycles of water, carbon and energy.

A team of MIT researchers led by Professors Edward DeLong and Penny Chisholm is trying to change that.

Borrowing gene sequencing tools developed for sequencing the human genome, the researchers have devised a new method to analyze gene expression in complex microbial populations. The work could help scientists better understand how oceans respond to climate change.

"This project can help us get a better handle on the specific details of how microbes affect the flux of energy and matter on Earth, and how microbes respond to environmental change," said DeLong, a professor of biological engineering and civil and environmental engineering.

... more about:
»CEE »DNA »DeLong »known »mRNA »microbe »microbial »sequences
"The new approach also has other potential applications, for example, one can now realistically consider using indigenous microbes as in situ biosensors, as well as monitor the activities of human-associated microbial communities much more comprehensively,"

DeLong said.

Their technique, which has already yielded a few surprising discoveries, is reported in the March 3 issue of the Proceedings of the National Academy of Sciences.

The work was facilitated by the Center for Microbial Oceanography:
Research and Education (C-MORE), a National Science Foundation Science and Technology Center established in 2006 to explore microbial ocean life, most of which is not well understood.
The traditional way to study bacteria is to grow them in Petri dishes in a laboratory, but that yields limited information, and not all strains are suited to life in the lab. "The cast of characters we can grow in the lab is a really small percentage of what's out there,"

said DeLong, who is research coordinator for C-MORE.

The MIT team gathers microbe samples from the waters off Hawaii, in a part of the ocean known as the North Pacific Gyre.

Each liter of ocean water they collect contains up to a billion bacterial cells. For several years, researchers have been sequencing the DNA found in those bacteria, creating large databases of prevalent marine microbial genes found in the environment.

However, those DNA sequences alone cannot reveal which genes the bacteria are actually using in their day-to-day activities, or when they are expressing them.

"It's a lot of information, and it's hard to know where to start,"
said DeLong. "How do you know which genes are actually important in any given environmental context?"

To figure out which genes are expressed, DeLong and colleagues sequenced the messenger RNA (mRNA) produced by the cells living in complex microbial communities. mRNA carries instructions to the protein-building machinery of the cell, so if there is a lot of mRNA corresponding to a particular gene, it means that gene is highly expressed.

The new technique requires the researchers to convert bacterial mRNA to eukaryotic (non-bacterial) DNA, which can be more easily amplified and sequenced. They then use sequencing technology that is fast enough to analyze hundreds of millions of DNA base pairs in a day.

Once the sequences of highly expressed mRNA are known, the researchers can compare them with DNA sequences in the database of bacterial genes and try to figure out which genes are key players and what their functions are.

The team found some surprising patterns of gene expression, DeLong said. For example, about half of the mRNA sequences found are not similar to any previously known bacterial genes.

Lead authors of the paper are Jorge Frias-Lopez, research scientist in MIT's Department of Civil and Environmental Engineering (CEE), and CEE graduate student Yanmei Shi. Maureen Coleman, graduate student in CEE, Gene Tyson, postdoctoral associate in CEE, and Stephan Schuster of Pennsylvania State University also authored the paper with Chisholm and DeLong.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: CEE DNA DeLong known mRNA microbe microbial sequences

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>