Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing the life history of a single cell

30.06.2014

Cell's unique mutations used to trace history back to its origins in the embryo

Researchers have developed new methods to trace the life history of individual cells back to their origins in the fertilised egg. By looking at the copy of the human genome present in healthy cells, they were able to build a picture of each cell's development from the early embryo on its journey to become part of an adult organ.

During the life of an individual, all cells in the body develop mutations, known as somatic mutations, which are not inherited from parents or passed on to offspring. These somatic mutations carry a coded record of the lifetime experiences of each cell.

By looking at the numbers and types of mutations in a cell's DNA, researchers were able to assess whether the cell had divided a few times or many times and detect the imprints, known as signatures, of the processes of DNA damage and repair that the cells had been exposed to during the life of the individual. Furthermore, comparing each cell's mutations with those of other cells in the body enabled scientists to map out a detailed tree of development from the fertilised egg.

"With this novel approach, we can peer back into an organism's development," says Dr Sam Behjati, first author from the Wellcome Trust Sanger Institute. "If we can better understand how normal, healthy cells mutate as they divide over a person's lifetime, we will gain a fundamental insight into what can be considered normal and how this differs from what we see in cancer cells."

The team looked at mouse cells from the stomach, small bowel, large bowel and prostate. The single cells were grown to produce enough DNA to be sequenced accurately. Eventually, single-cell sequencing technology will develop so that this type of experiment can be conducted using just one cell. However, the tiny amounts of DNA in single cells mean that mutation data are not currently precise enough to reconstruct accurate lineages.

The researchers recorded differences in the numbers of mutations in cells from the different tissues studied, likely attributable to differences in rates of cell division. Moreover, different patterns of mutation were found in cells from different tissues, suggesting that they have been exposed to different processes of DNA damage and repair, reflecting different lifetime experiences.

This experiment used healthy mice. If mutation rates are similar in human cells, these techniques could be used to provide an insight into the life histories of normal human cells.

"The adult human body is composed of 100 million million cells, all of which have originated from a single fertilised egg," says Professor Mike Stratton, senior author and Director of the Sanger Institute. "Much more extensive application of this approach will allow us to provide a clear picture of how adult cells have developed from the fertilised egg. Furthermore, by looking at the numbers and types of mutation in each cell we will be able to obtain a diary, writ in DNA, of what each healthy cell has experienced during its lifetime, and then explore how this changes in the range of human diseases."

###

Notes to Editors

Publication Details

Behjati et al. (2014) Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature DOI: 10.1038/nature13448

Participating Centres

Please see the paper for a full list of participating centres.

Selected Websites

The Hubrecht Institute for Developmental Biology and Stem Cell Research focuses on developmental biology and stem cells at the organismal, cellular, genetic, genomic and proteomic level. Basic insight into development and into stem cells will provide insight into (human) disease, such as cancer. The Hubrecht Institute is affiliated with the University Medical Center Utrecht and has close connections with the Utrecht University. http://www.hubrecht.eu/

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Mark Thomson | Eurek Alert!

Further reports about: DNA DNA damage differences experiences healthy human diseases mutations single cells

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>