Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The pathway into the cell

17.02.2012
MATHEON mathematicians are helping to unravel molecular processes

“Imagine an inflated balloon attached to a pump, but much, much smaller. By pinching off the neck of the balloon with a noose, it is detached from the pump and is able to move about freely.” The description is an approximation of one of the molecular processes looked at by mathematician Dr. Frank Noe as part of MATHEON’S ‘A19, Modelling and Optimisation of Functional Molecules’ project. Specifically, the molecular structure and mechanism of dynamin.


In the case of dynamin, the precise mechanism of action can be visualised in individual steps
Noe

Dynamin is a protein and the ‘noose’ which detaches the balloon from the pump. The vesicle (the scientific name for the balloon) has to be detached to allow it to perform its role as a vesicle for transporting messenger substances and nutrients into the cell. Substances which need to be transported into the cell first accumulate in a vesicle formed by invagination from the surface of the cell. The dynamin molecule then attaches to the neck of the vesicle and forms a spiral around it. It then severs the neck of the vesicle. The vesicle is now free to transport nutrients into the cell.

Whilst scientists have long known about the process, the molecular details of how dynamin works were until now unknown. A group of researchers at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin has now managed to obtain snapshots of the detailed molecular structure and, with the help of mathematical research carried out by Frank Noe and his team at MATHEON, been able to breathe life into these static structures.

“Without mathematical methods, it would not have been possible to simulate the processes which occur when the neck of the vesicle is severed,” explains the mathematician.

Simulating this molecular process is extremely difficult. “A simulation encompasses 250,000 particles and each iteration of the calculation takes around 1 second, even on a mainframe. To directly simulate this process, we would have to perform millions of iterations. That would take decades – scission within the cell takes just milliseconds.” With the help of mathematical methods developed at MATHEON, it was possible to divide the scission process up into many smaller, more manageable simulations.

In the case of dynamin, this allowed the precise mechanism of action to be visualised in individual steps. It turns out that the molecule operates via a specific pathway. “We were able to identify three primary states of the molecule,” explains the mathematician, describing the process as follows, “Initially, dynamin molecules attach to the neck of the vesicle individually, before linking up to form between one and a half and two tight turns around the neck of the vesicle. This structure then expands like a spring and rotates in on itself. The result is that the semi-fluid material making up the neck of the vesicle is more or less ripped apart. “

Understanding this process is important for medical science, as it represents a point of attack for fighting poisons and disease. “Many neurotoxins, for example, act at this point, thereby blocking nerve function,” explains Frank Noe. Degenerative neurological diseases such as Parkinson’s also affect the uptake of vesicles by nerve cells. “If we can obtain a better understanding of the mechanism of dynamin, we may be able to find new approaches to early diagnosis or treatments,” says Dr. Noe.

Collaboration between doctors, structural biologists and mathematicians in this area is set to continue. “The mathematical research being carried out within the MATHEON project will continue to make an important contribution to producing further useful insights,” explains Frank Noe.

The study has been published in the journal ‘Nature’, issue 477, page 556. Further information on the study can be found at
http://www.nature.com/nature/journal/v477/n7366/full/nature10369.html
and
www.biocomputing-berlin.de/biocomputing/en/projects/matheon_project_
a19_modelling_and_optimization_of_functional_molecules
Frank Noe will also be happy to provide you with further information and can be contacted by telephone on 030 838 75354 or by email at noe@math.fu-berlin.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de/
http://numerik.mi.fu-berlin.de/Forschung/Noe/index.php

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>