Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The pathway into the cell

17.02.2012
MATHEON mathematicians are helping to unravel molecular processes

“Imagine an inflated balloon attached to a pump, but much, much smaller. By pinching off the neck of the balloon with a noose, it is detached from the pump and is able to move about freely.” The description is an approximation of one of the molecular processes looked at by mathematician Dr. Frank Noe as part of MATHEON’S ‘A19, Modelling and Optimisation of Functional Molecules’ project. Specifically, the molecular structure and mechanism of dynamin.


In the case of dynamin, the precise mechanism of action can be visualised in individual steps
Noe

Dynamin is a protein and the ‘noose’ which detaches the balloon from the pump. The vesicle (the scientific name for the balloon) has to be detached to allow it to perform its role as a vesicle for transporting messenger substances and nutrients into the cell. Substances which need to be transported into the cell first accumulate in a vesicle formed by invagination from the surface of the cell. The dynamin molecule then attaches to the neck of the vesicle and forms a spiral around it. It then severs the neck of the vesicle. The vesicle is now free to transport nutrients into the cell.

Whilst scientists have long known about the process, the molecular details of how dynamin works were until now unknown. A group of researchers at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin has now managed to obtain snapshots of the detailed molecular structure and, with the help of mathematical research carried out by Frank Noe and his team at MATHEON, been able to breathe life into these static structures.

“Without mathematical methods, it would not have been possible to simulate the processes which occur when the neck of the vesicle is severed,” explains the mathematician.

Simulating this molecular process is extremely difficult. “A simulation encompasses 250,000 particles and each iteration of the calculation takes around 1 second, even on a mainframe. To directly simulate this process, we would have to perform millions of iterations. That would take decades – scission within the cell takes just milliseconds.” With the help of mathematical methods developed at MATHEON, it was possible to divide the scission process up into many smaller, more manageable simulations.

In the case of dynamin, this allowed the precise mechanism of action to be visualised in individual steps. It turns out that the molecule operates via a specific pathway. “We were able to identify three primary states of the molecule,” explains the mathematician, describing the process as follows, “Initially, dynamin molecules attach to the neck of the vesicle individually, before linking up to form between one and a half and two tight turns around the neck of the vesicle. This structure then expands like a spring and rotates in on itself. The result is that the semi-fluid material making up the neck of the vesicle is more or less ripped apart. “

Understanding this process is important for medical science, as it represents a point of attack for fighting poisons and disease. “Many neurotoxins, for example, act at this point, thereby blocking nerve function,” explains Frank Noe. Degenerative neurological diseases such as Parkinson’s also affect the uptake of vesicles by nerve cells. “If we can obtain a better understanding of the mechanism of dynamin, we may be able to find new approaches to early diagnosis or treatments,” says Dr. Noe.

Collaboration between doctors, structural biologists and mathematicians in this area is set to continue. “The mathematical research being carried out within the MATHEON project will continue to make an important contribution to producing further useful insights,” explains Frank Noe.

The study has been published in the journal ‘Nature’, issue 477, page 556. Further information on the study can be found at
http://www.nature.com/nature/journal/v477/n7366/full/nature10369.html
and
www.biocomputing-berlin.de/biocomputing/en/projects/matheon_project_
a19_modelling_and_optimization_of_functional_molecules
Frank Noe will also be happy to provide you with further information and can be contacted by telephone on 030 838 75354 or by email at noe@math.fu-berlin.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de/
http://numerik.mi.fu-berlin.de/Forschung/Noe/index.php

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>