Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Oncolytic Virus Shows Improved Effectiveness In Preclinical Testing

28.10.2011
A new fourth-generation oncolytic virus designed to both kill cancer cells and inhibit blood-vessel growth has shown greater effectiveness than earlier versions when tested in animal models of human brain cancer.
Researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) are developing the oncolytic virus as a treatment for glioblastoma, the most common and deadly form of brain cancer (average survival: 15 months after diagnosis).

The new oncolytic virus, called 34.5ENVE, improved survival of mice with transplanted human glioblastoma tumors by 50 percent in a majority of cases compared with the previous-generation oncolytic virus.

The study was published online in the journal Molecular Therapy.

“These findings show the amazing therapeutic efficacy of this new oncolytic virus against four different glioblastoma models in animals,” says cancer researcher Dr. Balveen Kaur, associate professor of neurological surgery, and a member of the OSUCCC – James viral oncology research program.

The new oncolytic virus is engineered to replicate in cells that express the protein nestin. First identified as a marker for neuronal stem cells, nestin is also expressed in glioblastoma and other malignancies including gastrointestinal, pancreatic, prostate and breast cancer.

“We believe that nestin-driven oncolytic viruses will prove valuable for the treatment of many types of cancer,” Kaur says.

The new oncolytic virus also carries a gene to inhibit tumor blood-vessel growth. That gene, called Vstat120, was added to increase its anti-tumor effectiveness and prolong the virus’s presence within tumors.

In this study of eight animals with intracranial tumors, six lived longer than 80 days, and these were later found to be tumor free. By comparison, control mice survived a median of 20 days, and mice treated with a first-, a second-, and a third-generation oncolytic virus survived 33, 34 and 53 days, respectively.

“Magnetic resonance imaging and histological analyses revealed extensive tumor destruction in animals treated with 34.5 ENVE,” says Kaur, who is also chief of Ohio State’s Dardinger Laboratory of Neurosciences. “We hope that we can soon evaluate the safety of this virus in patients with cancer.”

Funding from the National Institute for Neurological Disorders and Stroke, National Cancer Institute and National Research Foundation of Korea supported this research.

Other researchers involved in this study were Ji Young Yoo, Amy Haseley, Anna Bratasz, E. Antonio Chiocca, Jianying Zhang and Kimerly Powell of The Ohio State University.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (cancer.osu.edu) strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu
http://cancer.osu.edu/mediaroom/releases/Pages/New-Oncolytic-Virus-Shows-Improved-Effectiveness-In-Preclinical-Testing.aspx

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>