Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis reveals tumor weaknesses

13.08.2014

Identifying epigenetic markers in cancer cells could improve patient treatment

Scientists have known for decades that cancer can be caused by genetic mutations, but more recently they have discovered that chemical modifications of a gene can also contribute to cancer. These alterations, known as epigenetic modifications, control whether a gene is turned on or off.

Analyzing these modifications can provide important clues to the type of tumor a patient has, and how it will respond to different drugs. For example, patients with glioblastoma, a type of brain tumor, respond well to a certain class of drugs known as alkylating agents if the DNA-repair gene MGMT is silenced by epigenetic modification.

A team of MIT chemical engineers has now developed a fast, reliable method to detect this type of modification, known as methylation, which could offer a new way to choose the best treatment for individual patients.

"It's pretty difficult to analyze these modifications, which is a need that we're working on addressing. We're trying to make this analysis easier and cheaper, particularly in patient samples," says Hadley Sikes, the Joseph R. Mares Assistant Professor of Chemical Engineering and the senior author of a paper describing the technique in the journal Analyst.

The paper's lead author is Brandon Heimer, an MIT graduate student in chemical engineering.

Beyond the Genome

After sequencing the human genome, scientists turned to the epigenome — the chemical modifications, including methylation, that alter a gene's function without changing its DNA sequence.

In some cancers, the MGMT gene is turned off when methyl groups attach to specific locations in the DNA sequence — namely, cytosine bases that are adjacent to guanine bases. When this happens, proteins bind the methylated bases and effectively silence the gene by blocking it from being copied into RNA.

"This very small chemical modification triggers a sequence of events where that gene is no longer expressed," Sikes says.

Current methods for detecting cytosine methylation work well for large-scale research studies, but are hard to adapt to patient samples, Sikes says. Most techniques require a chemical step called bisulfite conversion: The DNA sample is exposed to bisulfite, which converts unmethylated cytosine to a different base. Sequencing the DNA reveals whether any methylated cytosine was present.

However, this method doesn't work well with patient samples because you need to know precisely how much methylated DNA is in a sample to calculate how long to expose it to bisulfite, Sikes says.

"When you have limited amounts of samples that are less well defined, it's a lot harder to run the reaction for the right amount of time. You want to get all of the unmethylated cytosine groups converted, but you can't run it too long, because then your DNA gets degraded," she says.

Rapid Detection

Sikes' new approach avoids bisulfite conversion completely. Instead, it relies on a protein called a methyl binding domain (MBD) protein, which is part of cells' natural machinery for controlling DNA transcription. This protein recognizes methylated DNA and binds to it, helping a cell to determine if the DNA should be transcribed.

The other key component of Sikes' system is a biochip — a glass slide coated with hundreds of DNA probes that are complementary to sequences from the gene being studied. When a DNA sample is exposed to this chip, any strands that match the target sequences are trapped on the biochip. The researchers then treat the slide with the MBD protein probe. If the probe binds to a trapped DNA molecule, it means that sequence is methylated.

The binding between the DNA and the MBD protein can be detected either by linking the protein to a fluorescent dye or designing it to carry a photosensitive molecule that forms hydrogels when exposed to light.

The MIT team is now adapting the device to detect methylation of other cancer-linked genes by changing the DNA sequences of the biochip probes. They also hope to create better versions of the MBD protein and to engineer the device to require less DNA. With the current version, doctors would need to do a surgical biopsy to get enough tissue, but the researchers would like to modify it so the test could be done with just a needle biopsy.

###

The research was funded by a David H. Koch fellowship, a National Science Foundation fellowship, a Burroughs Wellcome Fund Career Award, the National Institute for Environmental Health Sciences, and the James H. Ferry Fund for Innovation.

Written by Anne Trafton, MIT News Office

Andrew Carleen | Eurek Alert!

Further reports about: DNA MIT cytosine method methylated methylation modification modifications require respond sequence sequences

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>