Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analysis reveals tumor weaknesses

13.08.2014

Identifying epigenetic markers in cancer cells could improve patient treatment

Scientists have known for decades that cancer can be caused by genetic mutations, but more recently they have discovered that chemical modifications of a gene can also contribute to cancer. These alterations, known as epigenetic modifications, control whether a gene is turned on or off.

Analyzing these modifications can provide important clues to the type of tumor a patient has, and how it will respond to different drugs. For example, patients with glioblastoma, a type of brain tumor, respond well to a certain class of drugs known as alkylating agents if the DNA-repair gene MGMT is silenced by epigenetic modification.

A team of MIT chemical engineers has now developed a fast, reliable method to detect this type of modification, known as methylation, which could offer a new way to choose the best treatment for individual patients.

"It's pretty difficult to analyze these modifications, which is a need that we're working on addressing. We're trying to make this analysis easier and cheaper, particularly in patient samples," says Hadley Sikes, the Joseph R. Mares Assistant Professor of Chemical Engineering and the senior author of a paper describing the technique in the journal Analyst.

The paper's lead author is Brandon Heimer, an MIT graduate student in chemical engineering.

Beyond the Genome

After sequencing the human genome, scientists turned to the epigenome — the chemical modifications, including methylation, that alter a gene's function without changing its DNA sequence.

In some cancers, the MGMT gene is turned off when methyl groups attach to specific locations in the DNA sequence — namely, cytosine bases that are adjacent to guanine bases. When this happens, proteins bind the methylated bases and effectively silence the gene by blocking it from being copied into RNA.

"This very small chemical modification triggers a sequence of events where that gene is no longer expressed," Sikes says.

Current methods for detecting cytosine methylation work well for large-scale research studies, but are hard to adapt to patient samples, Sikes says. Most techniques require a chemical step called bisulfite conversion: The DNA sample is exposed to bisulfite, which converts unmethylated cytosine to a different base. Sequencing the DNA reveals whether any methylated cytosine was present.

However, this method doesn't work well with patient samples because you need to know precisely how much methylated DNA is in a sample to calculate how long to expose it to bisulfite, Sikes says.

"When you have limited amounts of samples that are less well defined, it's a lot harder to run the reaction for the right amount of time. You want to get all of the unmethylated cytosine groups converted, but you can't run it too long, because then your DNA gets degraded," she says.

Rapid Detection

Sikes' new approach avoids bisulfite conversion completely. Instead, it relies on a protein called a methyl binding domain (MBD) protein, which is part of cells' natural machinery for controlling DNA transcription. This protein recognizes methylated DNA and binds to it, helping a cell to determine if the DNA should be transcribed.

The other key component of Sikes' system is a biochip — a glass slide coated with hundreds of DNA probes that are complementary to sequences from the gene being studied. When a DNA sample is exposed to this chip, any strands that match the target sequences are trapped on the biochip. The researchers then treat the slide with the MBD protein probe. If the probe binds to a trapped DNA molecule, it means that sequence is methylated.

The binding between the DNA and the MBD protein can be detected either by linking the protein to a fluorescent dye or designing it to carry a photosensitive molecule that forms hydrogels when exposed to light.

The MIT team is now adapting the device to detect methylation of other cancer-linked genes by changing the DNA sequences of the biochip probes. They also hope to create better versions of the MBD protein and to engineer the device to require less DNA. With the current version, doctors would need to do a surgical biopsy to get enough tissue, but the researchers would like to modify it so the test could be done with just a needle biopsy.

###

The research was funded by a David H. Koch fellowship, a National Science Foundation fellowship, a Burroughs Wellcome Fund Career Award, the National Institute for Environmental Health Sciences, and the James H. Ferry Fund for Innovation.

Written by Anne Trafton, MIT News Office

Andrew Carleen | Eurek Alert!

Further reports about: DNA MIT cytosine method methylated methylation modification modifications require respond sequence sequences

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>